
Private Computation Using a PEZ Dispenser

József Balogh, János A. Csirik, Yuval Ishai, Eyal Kushilevitz

November 6, 2001

Abstract

We show how two or more deterministic players can privately compute a function of their inputs
using a (big) PEZ dispenser.

Key words: secure multiparty computation, recreational cryptography, combinatorial construc-
tions, deterministic protocols.

1 Introduction

The story. Consider a group of kids who wish to vote between two candidates without revealing
anything except the final outcome. To their aid is a PEZ dispenser, which may be pre-loaded with
some publicly known sequence of red and yellow candies.1 The kids take turns, where in each turn
one of the kids, based on her vote, decides how many candies to pop out of the dispenser. (No other
kid can see the number or the colors of these candies; neither can a kid weigh the dispenser and
deduce the number of remaining candies.) The pre-loaded color sequence and the kids’ instructions
must be arranged so that: (1) at the end of the above process, the color of the candy at the top of the
dispenser corresponds to the correct majority vote; (2) no kid can tell anything about the remaining
kids’ votes from the colors of the candies she took out of the dispenser. The voting process is completed
by having one of the kids pop an additional candy and announce its color. The above two requirements
guarantee that only the correct outcome is learned.

The problem. A more general and precise formulation of the problem is the following. There are
n deterministic players P1, . . . , Pn, where n ≥ 2. Each player Pi holds an input xi ∈ Σ, and together
they wish to compute some function f : Σn → Γ of their inputs while hiding their inputs from each
other. The players are assumed to be honest-but-curious: they follow their instructions, but may try
to deduce information about the other players’ inputs from what they see.2 The players are allowed
to interact with a very restricted trusted party, which implements the functionality of a PEZ dispenser.
This interaction is prescribed by a protocol of the following form. The trusted party is initialized with a
fixed string α ∈ Γ ∗, depending only on f. The protocol then proceeds by a sequence of moves. At each
move, some predetermined player Pi asks the trusted party to see the next k characters of α, where
k depends deterministically on Pi’s input xi. Upon termination, the protocol’s output is defined to be

1The reader who is not familiar with PEZ dispensers is referred to various online information about them (e.g.
www.pez.com and alanb.com/pez).

2This assumption also models an attack by a passive adversary, who has access to all of the information available to the
players it corrupts but cannot control their behavior.

1

the first untouched character of α. (We may assume that one of the players reads this character and
announces it to whoever is supposed to learn the output.) A protocol as above is said to be a private

PEZ protocol computing f if it satisfies the following two requirements:

CORRECTNESS. On any input x = (x1, . . . , xn) ∈ Σn the protocol’s output is equal to the correct value
f(x).

PRIVACY. No player or set of players can learn any information about the other players’ inputs from the
characters they read (excluding the last character, which contains the protocol’s output). Equiv-
alently, the substring of α read by each player Pi in each of its moves is completely determined
by xi, independently of all other inputs.3

A simple observation is that if we remove the privacy requirement, then any function f can be cor-
rectly computed as follows. For simplicity, assume that Σ = Γ = {0, 1}. The initial string α will
contain the truth-table of f, where the inputs are ordered by lexicographic order (i.e., the 2n-bit string
f(000 . . . 00), f(000 . . . 01), . . . , f(111 . . . 11)). In move j, 1 ≤ j ≤ n, player Pj will ask to read 2n−j · xj

bits (i.e., either 2n−j bits or none). At the end of this protocol, the first unread bit of α is the bit cor-
responding to the input x, whose value is f(x). Unfortunately, this solution completely fails to satisfy
the privacy requirement: a player who reads a long sequence of bits from the truth-table of f will typ-
ically be able to infer the location of this sequence, thereby learning information about the inputs of
other players. This illustrates the apparent difficulty of designing private PEZ protocols for non-trivial
functions. We refer the reader to Appendix A for a further discussion of the model, its robustness, and
some of its natural variants.

Before presenting some examples of private PEZ protocols and describing our results we shall try to
motivate the problem and put it in context.

Recreational cryptography. Our problem is best viewed as a “recreational crypto” problem. By
this we mean that we are mainly motivated by its sheer aesthetic qualities and are not aware of any
real-world application of any sort.4 Saying that, however, recreational crypto problems can still yield
interesting insights and techniques that might be employed in other contexts, as well as a conceptual
understanding of the underlying problems. Indeed, several problems of this type were already stud-
ied in the Crypto community and attracted a significant amount of interest. Examples include Visual

Cryptography, introduced by Naor and Shamir [8], and cryptographic protocols based on a deal of
cards, studied by Fischer and Wright [4]. For other recreational cryptography work see [7] and ref-
erences therein. Similarly to the above works, we also suggest a physically realizable implementation
of a cryptographic primitive. In contrast, however, our implementation does not require any use of
randomness.

Secure multiparty computation. The PEZ model may be viewed as a specific model for secure
computation. While our problem is very different in nature from the mainstream line of work in
this area, initiated in [9, 5, 2, 3], it is still instructive to put it in this more general context. The

3This privacy requirement may seem stronger than needed: it does not allow players to learn information that follows
from the value f(x) before the last character is read. The stricter definition is useful for making the model more robust. For
instance, it provides maximal privacy even in a case where f(x) should be learned only by some subset of the players or by
an external party.

4Other than, of course, playing with your kids. . .

2

original motivation of our research was a study of the power of trusted parties in secure protocols in
general, and in particular in the context of the amount of randomness used by the players. In what
follows we explain how the PEZ problem is related to these issues. It is well known that (without
a trusted party) randomness is essential for secure computation (see, e.g., [6]). Obviously, when a
trusted party is available there is a simple deterministic solution for the problem: each player sends
its input to the trusted party, who computes the desired value f(x) by itself and announces the result.
This solution, however, puts all the computational burden on the trusted party and so the question
is raised whether a similar deterministic solution is still possible using a weaker trusted party. The
main conclusion of our work is a surprising affirmative answer to an instance of this question: even a
severely handicapped, physically realizable, and inherently “leaky” trusted party (as the one described
above) allows nontrivial deterministic secure computation.

Two examples. As a first and simple example of a private PEZ protocol, consider the following
protocol for the function ANDn : {0, 1}n → {0, 1}, computing the product of the n input bits. We use
the initial string

α = 0 0 . . . 0︸ ︷︷ ︸
n

1.

Each player Pi in its turn reads a single bit of α if its input xi is 1 and otherwise it reads nothing. It is
clear that if all players have the input 1 (i.e., ANDn(x) = 1) then the output will be 1, while otherwise
the output will be 0. Moreover, each player when reading a bit from the string α always gets a 0 bit
(independently of the inputs of other players) and hence privacy is maintained. In general, however,
things are not as simple. For most functions it is not easy to find PEZ protocols and it does not even
seem clear that such protocols exist. Even for relatively simple functions, constructing private PEZ
protocols does not seem to be trivial. As a second example, let MAJ3 be the majority function on n = 3

bits. A private PEZ protocol for this function that uses the following 13-bit string α = 1001010010101

and has 7 moves proceeds as follows:5

#bits read #bits read substring read substring read
Move Player on input 0 on input 1 on input 0 on input 1

1 P1 5 0 10010 -
2 P2 0 3 - 100
3 P3 0 2 - 10
4 P2 0 1 - 1
5 P3 0 1 - 0
6 P2 1 0 1 -
7 P1 0 1 - 0

Figure 1: A private PEZ protocol for MAJ3 using initial string α = 1001010010101

It can be manually verified that for each of the 8 possible inputs in {0, 1}3, the substring of α that is
supposed to be read in each move is consistent with the number of bits read in previous moves, and
that the protocol has the correct output on each input.

5For each move we specify which player is reading from the PEZ string, how many bits she is reading given each of his
two possible inputs (0 or 1) and what substring she is expected to see in each case, where ‘-’ denotes the empty string.

3

Our results. We begin by studying the class of one-round PEZ protocols, i.e., protocols in which each
player makes at most one move (according to some predetermined order). We show that the functions
computable by these protocols are exactly those admitting a decision list representation. Consequently,
even simple functions such as the exclusive-or of two bits cannot be computed by a one-round private
PEZ protocol. We then proceed to show our main result: if no restriction on the number of moves is
made, then, quite surprisingly, every function can be computed by a private PEZ protocol.

The length of the initial string α used by our general construction is doubly exponential in the
number of players n, while that of the protocols for decision lists is “only” exponential. Hence, these
constructions are feasible only when n is small. It is important to note in this context that even without
the privacy requirement, most functions f (even explicit and simple ones) require exponential string
length.6

Organization. The rest of this paper is organized as follows. In Section 2 we formally define the
model and study some of its basic properties. Section 3 studies the power of one-round protocols, and
Section 4 includes our general construction. In Section 5 we mention some open problems. Finally,
Appendix A discusses some issues related to the robustness of the PEZ model.

2 Preliminaries

In this section we define the private PEZ model and prove two basic closure properties which will be
useful in the sequel. Some natural variants of the model are discussed in Appendix A.

2.1 Definitions

We start by formally defining the PEZ model and some notation related to PEZ protocols.

Definition 1 A PEZ protocol Π for a function f : Σn → Γ is defined by an initial string α ∈ Γ ∗ and a

sequence of m moves (M1, . . . ,Mm). Each move Mj consists of a pair (ij, µj), where ij is a player index

(between 1 and n) and µj : Σ → {0, 1, . . . , |α| − 1} specifies the number of characters to read, for each

possible value σ ∈ Σ that input xij may have. We will refer to the index sequence i1, i2, . . . , im as the

move order of Π. We assume that for any x ∈ Σn,
∑m

j=1 µj(xij) < |α| (so that the PEZ dispenser never

becomes empty during the execution of a protocol). A protocol Π as above is said to privately compute f if

there exists a mapping β : [m] × Σ → Γ ∗ (specifying the string read in each move on each possible input),

such that:

1. For any j ∈ [m] and σ ∈ Σ, |β(j, σ)| = µj(σ).

2. For any x ∈ Σn,

β(1, xi1) ◦ β(2, xi2) ◦ · · · ◦ β(m,xim) ◦ f(x) � α (1)

where ◦ denotes string concatenation and A � B signifies that the string A is a prefix of the string

B.

6A large class of Boolean functions requiring exponential complexity in the non-private PEZ model can be obtained by
communication complexity arguments. For instance, we show a simple decision list for which the exponential complexity of
our protocol is provably optimal, even in the non-private variant of the PEZ model. An important exception is the class of
symmetric functions, which do admit efficient protocols in the non-private model.

4

We note that Definition 1 is somewhat redundant, in the sense that the strings β(j, σ) are uniquely
defined by α and the moves Mj. Conversely, the function β and the move order i1, . . . , im alone are
sufficient to uniquely define a protocol Π computing f. However, the above form of the definition will
be convenient for our purposes.

Complexity. With a PEZ protocol Π we associate two complexity measures: its string length, denoted
by length(Π) and defined as |α| (the number of characters in α), and the number of moves m, denoted
by moves(Π). We say that Π is a one-round protocol if each player makes at most one move.

2.2 Two Closure Properties

Towards understanding the power of PEZ computation, it is natural to ask whether a protocol com-
puting a function f can be efficiently converted into protocols for related functions f ′. We show two
simple transformations that may be applied to arbitrary PEZ protocols, preserving their privacy and
complexity. The first transformation allows to manipulate the output of a PEZ protocol.

Lemma 2 (Output substitution lemma) Let Π be a private PEZ protocol computing f : Σn → Γ , and

let g : Γ → Γ ′ be an arbitrary character substitution function. Then, there is a private PEZ protocol Π ′

computing the function f ′(x)
def
= g(f(x)) with length(Π ′) ≤ length(Π) and moves(Π ′) ≤ moves(Π).

Proof: A protocol Π ′ as required may be obtained from Π by applying the output substitution g to
each character of α. It is easy to see that the new protocol correctly computes f ′ and that the privacy
of Π is not violated by the character substitution.

In the case of Boolean functions (Γ = {0, 1}), Lemma 2 implies that computing a function in the
PEZ model is as hard as computing its negation. A somewhat more surprising corollary is that the
identity function is the hardest to compute in the PEZ model. More precisely:

Corollary 3 Suppose that ΠI computes the identity function over Σn (that is, the function I : Σn → Σn

defined by I(x) = x). Then, for every output alphabet Γ and every function f : Σn → Γ there is a PEZ

protocol Πf computing f with length(Πf) ≤ length(ΠI) and moves(Πf) ≤ moves(ΠI).
7

The second transformation, described next, allows to manipulate the inputs to a PEZ protocol in a
restricted way.

Lemma 4 (Projection lemma) Let Π be a private PEZ protocol computing f : Σn → Γ . Let φ : (Σ ′)n
′

→
Σn be such that each of the n outputs of φ depends on at most a single input, and let f ′ : (Σ ′)n

′

→ Γ be the

function defined by f ′(x ′)
def
= f(φ(x ′)). Then, there is a PEZ protocol Π ′ computing f ′ with length(Π ′) ≤

length(Π) and moves(Π ′) ≤ moves(Π).

Proof sketch: The idea is to let each player in Π ′ simulate the players in Π whose outputs of φ are
affected by its input. Formally, let Π = (α,M1,M2, . . . ,Mm). A protocol Π ′ = (α ′,M ′

1, . . . ,M
′

m) as
required may be defined as follows. The initial string α ′ is equal to α. For each move Mj = (ij, µj),
let i ′j be the index of the input of φ on which the ij-th output of φ depends (or 1 if the ij-th output is
a constant), and let φij : Σ ′ → Σ be a mapping defining the ij-th output of φ as a function of its i ′j-th

input. The corresponding move M ′

j is defined by M ′

j = (i ′j, `
′

j), where ` ′j(σ
′)

def
= µj(φij(σ

′)) for each
σ ′ ∈ Σ ′.

7Recall that length(ΠI) is measured in terms of the number of characters of the output alphabet, which is Σn in this case.

5

In the case of a binary input alphabet, Lemma 4 allows to restrict input variables, permute them,
and replace variables by their negations. Moreover, Lemma 4 implies that, in some sense, it suffices
to consider functions and protocols over a binary input alphabet. This is formalized by the following
corollary.

Corollary 5 Let f : Σn → Γ be a function over an arbitrary alphabet Σ, and let k = dlog2 |Σ|e. Let

E : Σ → {0, 1}k be a bijection, mapping each character in Σ to a distinct binary string. Let f ′ : {0, 1}nk → Γ

be the translation of f to a binary alphabet, i.e., f ′ is such that f ′(E(x1) ◦ · · · ◦ E(xn)) = f(x1, . . . , xn) for

all (x1, . . . , xn) ∈ Σn. Then, any protocol Π ′ computing f ′ can be converted into a protocol Π computing

f such that length(Π) ≤ length(Π ′) and moves(Π) ≤ moves(Π ′).

Proof: The protocol Π is obtained by applying Lemma 4 with Π(x1, . . . , xn)
def
= E(x1) ◦ · · · ◦ E(xn) to

the protocol Π ′.

3 One-Round Protocols

In this section we attempt to answer the following questions: (1) which functions can be computed by
a one-round private PEZ protocol? (2) what is the cost (in terms of string length) required by such a
computation?

We start by defining the decision list computational model.

Definition 6 A decision list with input alphabet Σ and output alphabet Γ is defined by a list

L = 〈(i1, D1), (i2, D2), . . . , (i`, D`), def〉,

where each ij ∈ [n] is an index of an input variable, each Dj : Σ → Γ ∪ {⊥} decides, based on xij , whether

to output a specified value or to continue, and def ∈ Γ is a default output value. The value L(x) computed

by L on input x is the output of the following program:

if (D1(xi1) 6=⊥) output D1(xi1); else

if (D2(xi2) 6=⊥) output D2(xi2); else
...

if (D`(xi`) 6=⊥) output D`(xi`); else

output def;

We refer to ` as the length of L. We say that L is read-once if each input variable xi appears at most once

in L.

Note that in the case of a binary input alphabet, any decision list L can be assumed to be read-once
(otherwise there exists a shorter decision list L ′ computing the same function). However, this is not
true for general input alphabets.8

We now show that any read-once decision list can be computed by a one-round protocol. We start
with the following composition lemma.

8Corollary 5 reduces the task of computing a general function f to that of computing a function f ′ over a binary input
alphabet. However, it does not guarantee that if f can be computed in one round then so can f ′. We will therefore address
the general case in this section.

6

Lemma 7 Let Π be a private PEZ protocol computing f : Σn → Γ with an initial string α of length l

and with move order i1, i2, . . . , im (i.e., player i1 plays in move 1, i2 in move 2, etc.). For i ∈ [n] and

D : Σ → Γ ∪ {⊥}, define a function fD,i : Σn → Γ by:

fD,i(x) =

{
f(x), D(xi) =⊥
D(xi), otherwise

Then, fD,i admits a protocol Π ′ with string length |D(Σ)| · l and player move order i1, i2, . . . , im, i.

Proof: We may assume that ⊥∈ D(Σ): otherwise fD,i depends only on xi, in which case the lemma
easily follows. Let D(Σ) = {⊥, γ0, . . . , γk−1}, and let γ = γ0 ◦ γ1 ◦ · · · ◦ γk−1. A protocol Π ′ as required
can be constructed as follows. Its initial string α ′ is defined by

α ′ = γ ◦ α1 ◦ γ ◦ α2 ◦ · · · ◦ γ ◦ αl.

The move structure of Π ′ is as follows. First, the m moves of Π are executed, where the number
of characters read at each move is multiplied by k + 1. By the correctness of Π, at the end of these
moves the first k + 1 unread characters of α are γ ◦ f(x). In the final move of Π ′, player Pi will read k

characters if D(xi) =⊥ and k ′ characters, 0 ≤ k ′ < k, if D(xi) = γk ′ . Thus, the output of Π ′ is equal
to f(x) if D(xi) =⊥ and is equal to D(xi) otherwise. The privacy of Π ′ follows from the privacy of Π

and from the fact that the additional characters read by Pi in the last move are determined by xi.

Theorem 8 Let L = 〈(i1, D1), (i2, D2), . . . , (i`, D`), def〉 be a read-once decision list with input alphabet

Σ and output alphabet Γ . Then, L can be computed by a one-round private PEZ protocol with move order

i`, i`−1, . . . , i1 and string length k`, where k = min(|Σ|, |Γ | + 1).

Proof: We use induction on `. If ` = 0, then L = 〈def〉 computes a constant function, which
admits a trivial one-round protocol with string length 1 and no moves. Now, consider a length-` read-
once decision list L = 〈(i1, D1), (i2, D2), . . . , (i`, D`), def〉. By the induction’s hypothesis, the sub-list
L ′ = 〈(i2, D2), . . . , (i`, D`), def〉 has a one-round protocol ΠL ′ with a string α ′ of length k`−1 and move
order i`, i`−1, . . . , i2. (Note that if L is read-once then so is L ′.) A protocol ΠL computing L can now
be obtained by applying Lemma 7 to Π = ΠL ′ with i = i1 and D = D1. Since |D(Σ)| ≤ k, the string
length of ΠL is at most k · k`−1 = k`.

To get a complete characterization of the class of functions computable by one-round protocols,
we prove the following converse of Theorem 8.

Theorem 9 Suppose that f : Σn → Γ can be computed by a one-round private PEZ protocol. Then, f can

be computed by a read-once decision list.

Proof: We prove by induction on m that if f is computed by an m-move one-round protocol Π, then
f can also be computed by a read-once decision list LΠ of length m whose variables correspond to the
active players in Π. If m = 0, then f is a constant function, which can be computed by a length-0
decision list. Now, suppose that f is computed an m-move one-round protocol Π with move order
i1, . . . , im and last move Mm = (im, µm). We will use this last move to define the first decision of LΠ.

Let k = max(µm(Σ)), and let σ̂ ∈ Σ be some character on which this maximum is attained (that is,
xim = σ̂ maximizes the number of characters read by Pim on move m). Let f ′ denote the function f

restricted by xim = σ̂. The correctness of Π implies that the same f ′ is obtained if σ̂ is replaced by any

7

other σ̂ ′ such that µm(σ̂ ′) = k. Let β be as promised in Definition 1, i.e., β(j, σ) is the substring of α

read on move j when xij = σ, and let γ = β(m, σ̂). We define a function D : Σ → Γ ∪ {⊥} as follows:

D(σ) =

{
⊥, µ(σ) = k

γµ(σ)+1, otherwise

We will now argue that for any x ∈ Σn,

f(x) =

{
f ′(x), D(xim) =⊥
D(xim), otherwise

(2)

Let σ = xim. It follows directly from the definition of f ′ that if µ(σ) = k then f(x) = f ′(x). It remains
to show that if µ(σ) < k then f(x) = γµ(σ)+1(= D(xim)). By Eq. (1) we have:

β(1, xi1) ◦ · · · ◦ β(m − 1, xim−1
) ◦ β(m,σ) ◦ f(x) � α (3)

Letting x ′ be the input obtained from x by changing position im to σ̂, we also have:

β(1, xi1) ◦ · · · ◦ β(m − 1, xim−1
) ◦ γ ◦ f(x ′) � α (4)

From (3),(4), and the fact that β(m,σ) < k = |γ|, we may conclude that

β(m,σ) ◦ f(x) � γ,

implying that f(x) = γ|β(m,σ)|+1, as required.
Finally, observe that the restriction f ′ can be privately computed by a protocol Π ′ with move

order i1, . . . , im−1. Such a Π ′ can be obtained from Π by letting Pim−1
play the role of Pim on input

σ̂. Formally, the first m − 2 moves of Π ′ are as in Π, and its last move is (im−1, µm−1 + k). By the
induction’s hypothesis, f ′ admits a read-once decision list LΠ ′ over the variables i1, . . . , im−1. It follows

from Eq. (2) that L
def
= (im, D) ◦ LΠ ′ is a read-once decision list for f over the variables i1, . . . , im, as

required.

Theorem 9 proves that privacy comes at a price. Indeed, while any function can be computed in
one round in the non-private variant of the PEZ model, for most functions this is not the case in the
private model. The simplest example of a function which cannot be computed by a decision list is the
exclusive-or of 2 bits. In the next section we will see that 3 moves (“a round and a half”) are already
sufficient to privately compute this function.

Combining Theorems 8, 9, we get:

Corollary 10 A function f : Σn → Γ admits a one-round private PEZ protocol if and only if it can be

computed by a read-once decision list.

We conclude this section with a brief discussion of the string length of decision lists in the PEZ
model. The upper bound given by Theorem 8 is exponential in the decision list length. While it is
possible to do much better for some special classes of decision lists (generalizing the ANDn example
from the introduction), we show that this is not the case in general.

Theorem 11 Let L = 〈(1,D1), (2,D2), . . . , (`,D`), ` + 1〉 be a decision list over input alphabet Σ = {0, 1}

and output alphabet Γ = [` + 1], such that Di(0) =⊥ and Di(1) = i for 1 ≤ i ≤ `. Then, even if the

privacy requirement is dropped, the string length of every PEZ protocol computing L is at least 2` + 1.

8

Proof: Let Π be a correct (but not necessarily private) PEZ protocol for L, and for x ∈ {0, 1}n let
wx be the total number of bits read on input x. Assume towards a contradiction that length(Π) ≤ 2`.
It follows that wx < 2` for every x, and so there must exist distinct x ′, x ′′ such that wx ′ = wx ′′ .
Moreover, we can assume that there is no position i such that x ′

i = x ′′

i = 1; otherwise, both x and x ′

can be changed to 0 in every such position i without violating the equality wx ′ = wx ′′ . But this implies
that L(x ′) 6= L(x ′′), since the smallest position i such that x ′

i = 1 must differ from the smallest position
i such that x ′′

i = 1. This contradicts the assumption that wx ′ = wx ′′ .

4 A General Construction

The goal of this section is to construct a private PEZ protocol for every function f : Σn → Γ . By
Corollary 5, we may restrict our attention to the case of a binary input alphabet. Furthermore, by
Corollary 3 it suffices to specifically consider the identity function I : {0, 1}n → {0, 1}n. Our construction
may indeed be viewed as applying to this specific function. However, to make its presentation more
explicit we will directly apply our construction to a general function f : {0, 1}n → Γ .

Notation. Throughout this section, we will index the players and the input variables by 0, 1, . . . , n−1

(rather than 1, 2, . . . , n). For an integer m, the ith bit of m is the coefficient of 2i in the binary
expansion of m. We will view an input x as an integer, between 0 and 2n − 1, where the input of Pi is
the ith bit of (the integer) x.

Before describing our general construction we will need the following two definitions.

Definition 12 For any non-negative integer j, define the level of j to be the number of consecutive 1s

that appear at the end of the binary expansion of j. This is the unique non-negative integer i such that

j ≡ 2i − 1 (mod 2i+1).

Definition 13 For any non-negative integers x and j we say that x allows j if j is of level i and the ith bit

of x is 1 (in other words, x mod 2i+1 ≥ 2i). That is, the binary expansion of x contains 1 in the position

corresponding to the rightmost 0 of the binary expansion of j.

We are now ready to describe our protocol. Consider an arbitrary function f : {0, 1}n → Γ . We
define a protocol Π as follows. The protocol has 2n − 1 moves, which are executed in descending
order: (M2n−2,M2n−3, . . . ,M0). Move Mj is played by player Pij , where ij is defined as the level of

j. The initial string is defined as α
def
= S(2n − 1), where the function S(·) (induced by f) will be defined

below. In move Mj, player Pij will read nothing if xij = 0, or the string S(j) if xij = 1.

Definition 14 For any non-negative integer x, define S(x) recursively as follows:

(a) S(0) = f(0);

(b) for x > 0, S(x) is the concatenation of those S(j) (in decreasing order of indices), where j < x and x

allows j, followed by the symbol f(x).

9

Examples: Here are the first values of S(·):

S(0) = f(0)

S(1) = S(0) ◦ f(1)

S(2) = S(1) ◦ f(2)

S(3) = S(2) ◦ S(1) ◦ S(0) ◦ f(3)

S(4) = S(3) ◦ f(4)

S(5) = S(4) ◦ S(3) ◦ S(2) ◦ S(0) ◦ f(5)

...

In order to show the correctness of our construction we need two additional definitions.

Definition 15 For any non-negative integers x and c, B(x, c) is the concatenation of those S(j) (in de-

creasing order of indices) where x allows j and j < c.

Lemma 16 B(x, c) is the substring of α that will be read after Move Mc under the input x.

Proof: Consider Move Mj for some j < c. This move is played by Pi, where i is the level of j. By
Definition 13, x allows j iff the ith bit of x, or Pi’s input, is 1. It follows from the description of Π that
the substring S(j) will be read at Move Mj iff x allows j.

Definition 17 For any non-negative integers x and c, we write x ⊆ c if every bit in the binary expansion

of c is no less than the corresponding bit in x. (In other words, the set naturally encoded by x is a subset

of the set encoded by c.) We write x ⊂ c if x ⊆ c and x 6= c.

Observe that x ⊆ c implies x ≤ c.
Our main theorem is the following:

Theorem 18 For any non-negative integers x and c, x ⊆ c implies that

B(x, c) ◦ f(x) � S(c).

Substituting c = 2n − 1, we obtain the following corollary, which establishes the correctness of our
protocol.

Corollary 19 For any input 0 ≤ x ≤ 2n − 1,

B(x, 2n − 1) ◦ f(x) � S(2n − 1).

Since α = S(2n − 1) and (by Lemma 16) B(x, 2n − 1) is the prefix of α read on input x, this means that

our substrings S(j) are consistent with α and f.

Before we can prove Theorem 18, we need another technical lemma.

Lemma 20 If x ⊂ c, then there is a k such that x ≤ k < c, k is allowed by c, and k is not allowed by x.

10

Proof: Let i be one of the integers such that the ith bit of c is 1 and the ith bit of x is 0. Then
c mod 2i+1 ≥ 2i and x mod 2i+1 < 2i, thus there is at least one integer k in the range x ≤ k < c such
that k ≡ 2i − 1 (mod 2i+1). This k is allowed by c, but not by x.

Proof of Theorem 18: This proof proceeds by induction on c − x ≥ 0. The statement is true by
definition if c = x: S(x) = B(x, x) ◦ f(x).

Let us now consider x ⊂ c. By Lemma 20, there exist k such that x ≤ k < c and k is allowed by c

but not by x. Let k0 be the largest such k.
Since the string S(c) does not occur in the definition of B(x, c), the strings defining S(c) and B(x, c)

match up exactly up till S(k0) occurs in S(c), but not in B(x, c). Thus, in order to prove the theorem, it
suffices to show that B(x, k0)◦ f(x) � S(k0). Since k0 is smaller than c, this would follow by induction,
if it could be established that x ⊆ k0.

Let i be the level of k0. Then k0 is the largest integer of level i that is no greater than c (otherwise,
that bigger number would have been selected as k0). Since k0 mod 2i+1 = 2i − 1 and c mod 2i+1 ≥ 2i,
the binary digits in k0 and c that correspond to powers of 2 over 2i are equal. (Thus they dominate
the corresponding bits of x.) The ith bit of x is 0, since x does not allow k0. Thus there is no condition
on the corresponding bit in k0.9 Finally, the bits in k0 that correspond to powers of 2 below 2i are all
1, thus dominating whatever bits x might have there.

For a crude analysis of length(Π), note that |S(j)| = O(j!), implying that length(Π) = O(2n!) =

22Õ(n)
. We conclude this section with the following theorem:

Theorem 21 Any function f : {0, 1}n → Γ admits a private PEZ protocol with 2n − 1 moves and string

length 22Õ(n)
.

5 Open Questions

Having established the universality of private PEZ computation, it remains to better understand its
complexity. Some of the more interesting open questions are:

• What are the minimal string length and number of moves required for computing the worst

functions? Note that, by Corollary 3, it suffices to consider the identity function. Our general
upper bound leaves room for an exponential improvement.

• Do the answers to the above question change if one considers natural special classes of functions,
such as (from large to small): (1) Boolean functions, (2) symmetric functions, or (3) threshold
functions? Note that for classes (2) and (3) there seems to be no inherent reason precluding
protocols with poly(n) string length. Moreover, the specific protocol for MAJ3 described in
Figure 1 provides some positive evidence: its string length is 13, in comparison to 72 in the
general construction for n = 3.

References

[1] D. Beaver. Precomputing oblivious transfer. In Proc. of Crypto ’95, pages 97-109.

9Which is just as well: that bit is 0 too.

11

[2] M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness theorems for non-cryptographic
fault-tolerant distributed computation. In Proc. of 20th STOC, pages 1–10, 1988.

[3] D. Chaum, C. Crépeau, and I. Damgård. Multiparty unconditionally secure protocols (extended
abstract). In Proc. of 20th STOC, pages 11–19, 1988.

[4] M. J. Fischer and R. N. Wright. Multiparty Secret Key Exchange Using a Random Deal of Cards.
In Proc. of Crypto ’91, LNCS 576, pages 141–155.

[5] O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game (extended abstract).
In Proc. of 19th STOC, pages 218–229, 1987.

[6] E. Kushilevitz, and A. Rosén, A Randomness-Rounds Tradeoff in Private Computation. SIAM

Jour. on Discrete Math., Vol. 11(1), pages 61–80, 1998.

[7] M. Naor, Y. Naor and O. Reingold. Applied Kid Cryptography or How to convince your
children you are not cheating. J. of Craptology, vol. 0(1), April 1999. Available online at
http://www.wisdom.weizmann.ac.il/∼naor/onpub.html.

[8] M. Naor and A. Shamir. Visual Cryptography. In Proc. of Eurocrypt ’94, pages 1–12.

[9] A. C. Yao. How to generate and exchange secrets. In Proc. of 27th FOCS, pages 162–167, 1986.

A Variants of the PEZ Model

In this section we discuss several natural variants of the definition of the private PEZ model. Our
main conclusion is that this model is quite robust: most natural changes to its definition either leave
it (essentially) the same, or make it (essentially) uninteresting.

A.1 (Essentially) Equivalent Variants

We start with modifications of the problem which do not really make a difference.

General privacy thresholds. In our definition, as described in the Introduction, we require that no
subset of players can learn information about the inputs of other players from the substrings of α

which they read. A natural relaxation is a t-privacy requirement, which should hold only for subsets
of at most t players. However, since our model is deterministic, the weakest requirement of 1-privacy
is already sufficient to imply our default requirement of n-privacy.

Adaptivity and additional communication. Our definition requires players to be non-adaptive:
their choice of how many characters to read cannot depend on what they have previously seen. How-
ever, since by our privacy requirement the bits read by Pi depend only on xi, the notion of adaptivity
becomes void. Similarly, allowing the players to directly communicate with each other over private
channels would not have made a difference (unless randomization is allowed). These issues will be
later revisited.

12

Incorporating multi-output functionalities. As far as our definitions are concerned, the execution
of a PEZ protocol ends when the first unread character is the output of the computation. The issue
of how this output is learned by the players (e.g., by having one of the players read it and announce
it to the other players) is external to our model. For this reason, we also do not explicitly specify
who should learn the final output: whether it should be learned by all players, by some strict subset
of the players, or by an external party. An even more general specification of a functionality f to be
computed by the protocol can assign an arbitrary function of the input x to each player. We now
show how to naturally incorporate an output-learning stage in our model, such that computing an
arbitrary multi-output functionality ~f : Σn → Γn in the new model reduces to computing some related
single-output functionality f ′ in the original model. In the new model (which incorporates output
learning), a special output round is added to the end of the protocol, where each player reads one
character. The character read by Pi at the output round should be equal to its output. The privacy
requirement remains unchanged: players should learn nothing until the output round (a modification
of this requirement is discussed in the next paragraph). To implement ~f in the new model, let f ′ be a
single-output function whose single output is a concatenation of the n outputs of ~f (so that the output
alphabet of f ′ is Γ ′ = Γn. Now, suppose that Π ′ computes f ′ in the standard model, with initial string
α ′. A protocol Π computing ~f in the new model may proceed as follows. The output alphabet of Π is
Γ . Its string α will be the natural length-n|α| conversion of α ′ to the alphabet Γ . The moves of Π will
be the same as in Π ′, except that the number of bits read in each move is multiplied by n. Finally, at
the output round, each player in its turn reads a single character. The protocol Π clearly computes ~f,
and its privacy follows from that of Π ′.

Allowing players to learn the function value. In our definition we make the strongest privacy
requirement possible: no player or set of players is allowed to learn any information, even if such
information would follow from the output of the function. This convention has several important
advantages, most notably the fact that it allows various manipulations of the protocols (see, e.g.,
Lemma 2). But it is still natural to ask how the power of the model would change if we allow the
players to learn information that follows from their inputs and the value of the function f. (We are
assuming here that the value of f should be learned by all players; however, a similar discussion applies
to general functionalities.) For this modification of the model, it is not clear that its power remains the
same. For instance, computing the function XORn (exclusive-or of n bits) in the more liberal model
efficiently reduces to computing the function XORn−1 in the original model, which may as well be a
significantly easier task. However, the extra power of the more liberal model does not extend much
farther than that. Specifically, consider a Boolean function f. We argue that from a protocol for f

in the liberal model, one can get a protocol in the standard model for any function f ′ obtained by
restricting a single variable of f. Indeed, let f ′ denote the function f with xi restricted to some value c.
A standard protocol for f ′ can be obtained by simulating the liberal model with the value of Pi fixed to
c. By the (relaxed) privacy requirement of the protocol for f, player Pi should see at most two possible
transcripts: one for all inputs x such that xi = c and f(x) = c, and one for all x such that xi = c

and f(x) = 1. If these two transcripts are identical, then the protocol already satisfies the default
privacy requirement. Otherwise, the protocol can be truncated just before the first point of difference,
resulting (again) in a protocol for f ′ in the standard model. A similar argument applies even if the
model is further relaxed by adding adaptivity and direct communication between players.10

10In fact, adaptivity alone is as strong: point-to-point communication channels can be simulated via an adaptive access to
the PEZ dispenser at a moderate complexity cost.

13

A physically motivated variant. In the physical PEZ model we assume that it is impossible for a
player to see anything but the candies it takes out of the dispenser. In practice, however, additional
one or two candies can be seen. This concern also arises when physically implementing PEZ protocols
using a deck of cards, where the card at the bottom of the deck is the analogue of the candy at the top
of the dispenser. A private PEZ protocol in our setting can be converted into a private PEZ protocol
in this more leaky setting by inserting a small number of “dummy” candies, of some default color,
between any two original candies.

A.2 “Uninteresting” Variants

We now discuss some modifications of the default PEZ model which make it either useless or essentially
equivalent to other standard models.

Randomized PEZ. A seemingly interesting modification of the PEZ model allows the initial string α

to be randomized. (This also allows to simulate private sources of randomness.) The adaptive version
of this model is very powerful, since it allows to privately distribute arbitrarily correlated random
sources to the players. Such resources can be used, for instance, as one-time pads for performing
subsequent oblivious transfer protocols [1], which in turn can be used for privately computing any
circuit of size s with an initial string of length O(n2s). However, this model is not very interesting,
in the sense that it equivalent to standard secure computation with initialization by a trusted party.
Indeed, the “interactive” functionality of the PEZ dispenser can be simulated in the latter model by
standard general techniques for secure computation.

Malicious PEZ. Throughout this work, we assume that the players are honest-but-curious. It is not
hard to see that there is not much to do against malicious players (if all other aspects of the definition
remain the same). For instance, the player who makes the second move can attempt to read all the
remainder of α and see how many characters the first player took.

Non-private PEZ. We already mentioned in the introduction the non-private version of the PEZ
model and showed how any function can be easily implemented in that model (by implementing its
truth-table). Besides being unrelated to cryptography, this model also is not very interesting from
a complexity theoretic point of view. Moreover, by allowing this model to be adaptive, it becomes
as strong as the general communication complexity model (where the PEZ dispenser can be used to
implement communication between parties).

14

