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Index assignment for two-channel quantization
József Balogh, János A. Csirik

Abstract

This paper concerns the design of a multiple description scalar quantization system for two symmetric channels for an unbounded discrete
information source. This translates to the combinatorial problem of finding an arrangement of the integers into the infinite plane square
grid so that each row and each column contains exactly N numbers, such that the difference between any two numbers in the same row (or
column) is at most d, with d to be minimized for a given N . The best previous bounds for the lowest d were N 2/3+O(N) and N2/2+O(N).
We give new lower and upper bounds, both of the form 3N2/8 + O(N). We also consider minimizing the maximal variance in any row or
column and show that it must be at least 0.0167N4 , and that it does not have to be more than 0.0188N4 .

I. Introduction

A diversity system provides several different channels for transmitting information from the source to the user. This
way, if a channel breaks down, an alternate path is available between the source and the user. Consider a diversity
system with two channels. If identical information is sent over each channel and if both channels work, half of the
received information is worthless. We consider sending different information over each channel in such a way that if only
one channel works the information received over it is sufficient to achieve a minimum fidelity. On the other hand, should
both channels work, the information from one channel can be used to augment the information from the other channel
to achieve a higher fidelity than would each channel alone. The problem of designing codes of this kind is known as the
multiple descriptions problem ([1]) and is a generalization of the problem of source coding subject to a fidelity criterion
([2]).

A multiple description scalar quantizer (MDSQ) is a scalar quantizer designed for operation in a diversity system.
The encoder of an MDSQ sends information over each channel of the diversity system subject to a rate constraint. The
decoder reconstructs the source sample based on the information received from the channels that are currently working.
The objective is to design a decoder-encoder pair that minimizes the distortion when both channels work, subject to
constraints on the distortion when only one channel works (either channel may break down). Thus, in the event that
exactly one of the channels is broken, a minimum fidelity is guaranteed.

Applications of multiple description source codes arise in speech and video coding over packet-switched networks,
where packet losses can result in a degradation in signal quality and there are significant delay constraints. For details,
and more examples, see [3], [4].

The design of a MDSQ system involves two steps: quantization of the source, and the index assignment problem
of distributing the quantized signal over multiple channels. In this paper, we will only consider the index assignment
problem. That is, we will consider MDSQ design for an unbounded discrete information source. We consider the case
of two symmetric channels, where the rate of both channels is equal and the maximum distortion of either channel is
to be minimized (this corresponds to wanting the smallest possible distortion if either channel fails). This translates
to the combinatorial problem of finding an arrangement of the integers into the infinite plane square grid so that each
row and each column contains exactly N numbers. In this setup, the integers written into the grid represent symbols
emitted by the source, and the coordinates of a number are what is sent on the two channels for that source symbol.
The parameter N serves to control the amount (log2 N) by which the rate of each channel is less than that of the source.

If only one of the channels works then we only know that the source symbol is one of the N possibilities in the row
or column selected by the working channel. Let the maximal occuring difference between any two numbers in the same
row (or column) be d. Then minimizing the absolute distortion given the rate amounts to finding, for a given N , an
arrangement with the smallest possible spread d. This problem was considered in [4] and in [5], where it was proved that
the best d is at least N2/3 + O(N) and at most N2/2 + O(N) (these are the best known results not contained in this
paper, as far as we know). In this paper we show that the best d is in fact 3N 2/8+O(N). Specifically, in Sections III-B
and III-C we show that

Theorem I.1: Assume that the integers have been arranged within a plane square grid, with each row and column
containing exactly N numbers, and the difference between any two numbers in the same row (or column) is at most d.
Then

3N2/8− 1/2 ≤ d.

For even N , this bound is optimal, that is, an arrangement with d = d3N 2/8− 1/2e exists. For odd N , an arrangement
exists with d = 3N2/8 + N/4 + O(1).
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Both the upper bound (construction using large square blocks) and the lower bound (proof using a particular combi-
nation of local and global methods) of this paper contain new ideas that will extend to the case of asymmetric channels
(with different rates), and to more than two channels.

The index assignment problem for MDSQ also has connections to the theory of graph bandwidths. For more details,
see [6].

Later in the paper, we consider the MDSQ problem where we aim to reduce the mean squared error of the reconstituted
signal rather than the biggest possible absolute distortion. In the combinatorial setup, this corresponds to considering
the supremum of the variances of the rows and columns in our arrangements. We are not aware of any previously proved
lower bounds in this context.

Since our construction for the upper bound involves putting together densely filled squares (just like in the case of
minimizing spread), it will be a useful and interesting intermediate step to investigate the same question for arrangements
of the integers 1 through N2 in an N -by-N square.1 This will be carried out in Sections IV-B through IV-D, where we
prove

Theorem I.2: Assume that the integers 1 through N 2 have been arranged in an N -by-N matrix P , and the variance
of numbers in any row or column is at most V . Then

(1/24 + 10−7)N4 − 1/24 ≤ V.

For any N , there exists an arrangement with V = N 4/16 + O(N3).
The arrangements in the whole plane are then investigated in Sections IV-E and IV-F. We obtain
Theorem I.3: Assume that the integers have been arranged within a plane square grid, with each row and column

containing exactly N numbers, and the variance of numbers in any row or column is at most V . Then

N4/60− 1/60 ≤ V.

For any N , an arrangement exists with V = N 4/53 1
3 .

The best previous upper bound known to the authors is N 4/48 + O(N3) in [7].
It is also useful and interesting to determine the maximal spread within rows and columns when the integers 1

through N2 are arranged in an N -by-N square. This question has already been resolved fully by Tanya Y. Berger-Wolf
and Edward M. Reingold in [5]. The smallest possible spread that can be attained is N(N + 1)/2− 1.

II. Notation

We shall always deal with arrangements of numbers into square grids, where each row or column contains exactly N
numbers. For any set of integers T , let H(T ) denote the set of horizontal neighbors of T , i.e., the set of integers who are
in the same row as some element of T . Similarly, define V (T ) to be the set of vertical neighbors of T . For example, if R
is any row of an arrangement, the cardinality of V (R) is N 2, since R has N elements and each one has N numbers in
its column.

For any integer x in the arrangement, let C(x) denote the (numbers in the) column of x and R(x) the (numbers in
the) row of x.

For any set Z we use #Z to denote its cardinality. As usual, we let the variance of a list (X1, X2, . . . , Xn) of real
numbers be denoted by

Var(X1, X2, . . . , Xn) =
1

n

∑

i

(Xi − X)2,

where X = 1
n

∑

i Xi is the mean.
For any random variable X , we use E(X) and Var(X) to denote its mean and variance.

III. Minimizing the absolute distortion

A. Outline of argument

For the upper bound, we exhibit a construction. The crucial idea is that once we decided on the footprint of an
arrangement (the fields in the infinite grid where we are to put integers), it is relatively straightforward to permute the
integers within the selected positions so as to achieve the smallest possible maximal spread. The optimal footprint for
even N turns out to be composed of solid N/2-by-N/2 squares arranged along a diagonal, plus another solid N/2-by-
N/2 placed immediately below each of the diagonal ones. Details, and a description of the case of odd N , are given in
Section III-B.

To give an idea of the argument for the lower bound, consider first the lower bound d ≥ (N 2 − 1)/3 due to Diggavi,
Orlitsky and Vaishampayan ([7]). Pick an arbitrary row R of the arrangement, and let m and M be the smallest and

1In the MDSQ setup, this corresponds to splitting a bounded discrete information source into two channels which both have exactly half
the rate of the source.
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largest elements of R. Then clearly M−m ≤ d. Furthermore, every element of V (R) is at most m+2d, since any element
of R is at most m + d, and any element of V (R) is at most d bigger than the element of R in its column. Similarly, all
elements of V (R) are at least M − 2d. Thus we have at least N 2 distinct integers in the interval [M − 2d, m + 2d] of
length at most 3d. It follows that d ≥ (N 2 − 1)/3.

This argument can be improved in the following direction. Assume that d is approximately N 2/3, and let g and
G be the minimal and maximal elements of V (R). It can then be deduced that H(C(g)) ∩ H(C(G)) must contain
approximately N/3 rows, and that it must contain essentially all the numbers in [m, M ]. Running through a similar
argument starting with C(g) instead of R, we get N/3 columns in V (R) that contain essentially all of the integers in
[m−d, m]. However, the N2/9 squares where those rows and columns intersect must then be essentially empty, implying
that a lot of the elements of H(C(g))∩H(C(G)) do not lie in V (R). But since all elements of H(C(g))∩H(C(G)) do lie
in [M − 2d, m + 2d], we can get a stronger lower estimate for d than before, since V (R) plus all of H(C(g)) ∩ H(C(G))
and must lie in [M − 2d, m + 2d]. Working through this argument, we can obtain a lower bound of the form d ≥ cN 2,
where 1/3 < c < 3/8.

In Section III-C, we show how to extend this argument by carefully considering the contents of a large set of special
sets of rows and columns and the ways in which their contents can intersect.

B. The upper bound for the spread

Proof: (Proof of Theorem I.1, upper bound.) We will first explain our construction for even N . Examples will be
given for N = 8. Start by filling in the numbers 1 through N 2/4 in an N/2-by-N/2 square as follows. Start by placing
the numbers 1, 2, . . . , N2/8 − N/4 below the northwest–southeast diagonal by filling the available spaces in the last
row, then the second-last row, and so on, progressing from left to right in each row. Then place the numbers from N 2/4
down to N2/8 + N/4 + 1 above the diagonal, by filling the available spaces in the last column, then the second-last
column, and so on, progressing from top to bottom in each column. At this point, our square looks like this:

. 11 13 16
6 . 12 15
4 5 . 14
1 2 3 .

Of the remaining numbers (N2/8 − N/4 + 1 through N2/8 + N/4), put the central one2 into the upper left corner,
distribute the rest arbitrarily. We get

8 11 13 16
6 7 12 15
4 5 10 14
1 2 3 9

Let Pi,j denote the (i, j) entry of the N/2-by-N/2 matrix just constructed. Let Qi,j denote the number (if any) that is
placed into the (i, j)th position of the infinite plane square grid in the arrangement we are currently constructing.3 We
define Qi,j as follows. Let

i =
N

2
a + i′, with i′ ∈ {1, 2, . . . , N

2 },

j =
N

2
b + j′, with j′ ∈ {1, 2, . . . , N

2 },

where a and b are integers. Then

Qi,j =







Pi,j + aN2/2 if a = b,
Pj,i + (a + 1

2 )N2/2 if a + 1 = b,
empty otherwise.

For N = 8, we obtain

2If N is divisible by 4, there are two central ones: just pick one.
3For consistency, the first coordinate increases toward the north in both P and Q.
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40 43 45 48 . .
38 39 44 47 . .
36 37 42 46 . .
33 34 35 41 . .

8 11 13 16 25 30 31 32
6 7 12 15 19 26 28 29
4 5 10 14 18 21 23 27
1 2 3 9 17 20 22 24

. . -7 -2 -1 0

. . -13 -6 -4 -3

. . -14 -11 -9 -5

. . -15 -12 -10 -8

It is easy to check that the maximal spread is d3N 2/8 − 1/2e. Note that no smaller maximum spread can be expected
with this layout, since three adjacent squares must contain 3N 2/4 numbers, all within distance 2d of each other.

For odd N , we can achieve d = 3N 2/8 + N/4 + O(1). The construction starts by carrying out the above construction
for N + 1 (which is even). Letting i = N+1

2 a + i′ and j = N+1
2 b + j′, with a, b integers and i′, j′ ∈ {1, 2, . . . , N

2 }, replace
Qi,j by an empty square if
• either a = b, i′ + j′ = N+3

2 , and i′ ≤ N+1
4 ;

• or a + 1 = b, i′ + j′ = N+3
2 , and i′ > N+1

4 .
For example, for N = 7, we get

43 45 48 . .
38 44 47 . .
36 37 42 46 . .
33 34 35 41 . .

11 13 16 25 30 31 32
6 12 15 19 26 28 29
4 5 10 14 18 21 27
1 2 3 9 17 20 22

. . -7 -2 -1 0

. . -13 -6 -4 -3

. . -14 -11 -5

. . -15 -12 -10

To complete the construction, apply an order-preserving bijection between the remaining numbers and the set of all
integers:

39 41 44 . .
36 40 43 . .
34 35 38 42 . .
31 32 33 37 . .

11 13 16 23 28 29 30
8 12 15 19 24 26 27
6 7 10 14 18 21 25
3 4 5 9 17 20 22

. . -5 0 1 2

. . -9 -4 -2 -1

. . -10 -7 -3

. . -11 -8 -6

The maximal difference in this case is easily seen to be 3N 2/8 + N/4 + O(1).

C. The lower bound for the spread

We will prove the lower bound in Theorem I.1 indirectly. The following convention embodies the opposite of the
conclusion of the theorem:

Convention III.1: From now on, we shall assume that

d < 3N2/8− 1/2.
Definition III.2: Let R0 be an arbitrary row in the arrangement. Let m1 be the smallest element of V (R0). If i is

a positive odd integer and mi has already been defined, let Ri be the column containing mi, let Ni = H(Ri). If i is
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a positive even integer and mi has already been defined, let Ri be the row containing mi, let Ni = V (Ri). For any
positive integer i, if Ni has already been defined, let mi+1 be the smallest element of Ni.

Unwinding Definition III.2, we get columns R1, R3, R5, . . . , and rows R2, R4, R6, . . . . For all positive integers i, we
have mi ∈ Ri ⊂ Ni. Also note that Ni always has exactly N2 elements.

Lemma III.3: For all x ∈ Ni, we have
mi+1 ≤ x ≤ mi + 2d.

Proof: The lower bound is valid by the definition of mi+1.
Note that mi ∈ Ri and let x0 be the element of Ri that is in the same row (respectively column) as x, if i is odd

(respectively even). By the definition of d, we have x − x0 ≤ d and x0 − mi ≤ d. The sum of these two inequalities
yields the upper bound of the lemma.

Lemma III.4: For any positive integer i,
mi − mi+1 ≤ d.

Proof: Let x0 be the unique element of Ri ∩Ri+1. Then x0 −mi+1 ≤ d by the definition of d, and mi ≤ x0 by the
definition of mi. Thus, the lemma follows.

Lemma III.5: For any positive integer i,

N2 − 2d − 1 ≤ mi − mi+1.
Proof: By Lemma III.3,

maxNi ≤ mi + 2d,

mi+1 ≤ min Ni.

Since Ni has N2 elements, we also have
min Ni + N2 − 1 ≤ maxNi.

Summing the three displayed inequalities and rearranging yields the claim of the lemma.
Corollary III.6: If i and j are any pair of distinct non-negative integers, then mi 6= mj . The same statement applies

to Ri and Ni.
Proof: By Convention III.1, N 2−2d+1 is positive. Thus, mi 6= mj follows by Lemma III.5. The similar statements

for Ri and Ni of course follow directly from the one for mi. This demonstrates that the construction in Definition III.2
never bogs down: the successive Ni always contain new numbers that have not occured in any Ni before.

Lemma III.7: For any positive integer i, and any integer k ≥ 2,

Ni ∩ Ni+2k = ∅.
Proof: For an indirect proof, assume that there is a row (respectively, column) Z that contains elements of both

Ri and Ri+2k , if i is odd (respectively, even). Let x0 be the unique element of Ri+2k ∩ Z, and let x1 be the unique
element of Ri ∩Z. Then x0 −mi+2k ≤ d and x1 −x0 ≤ d. However, since x1 is in Ni, we also have x1 ≥ mi. Combining
these inequalities, we obtain that

mi − mi+2k ≤ 2d.

Summing the conclusion of Lemma III.5 applied 2k times (for i, . . . , i + 2k − 1), we obtain

2k(N2 − 2d + 1) ≤ mi − mi+2k.

Combining the two displayed inequalities above, we obtain

2kN2 + 2k ≤ (4k + 2)d,

which contradicts Convention III.1, thus proving our lemma.
Definition III.8: For any set X , we shall use #X to denote the number of elements in X .
Lemma III.9: For any positive integer i,

#(Ni ∩ Ni+3) ≤ 2d + 1 − (mi+1 − mi+3).
Proof: In this proof, for brevity’s sake, denote Ni ∩Ni+3 by F . If F is empty then there is nothing to prove, since

the right hand side of our inequality is always at least 1 by Lemma III.4. Let us now assume that F is not empty.
Since any element of F is also in Ni, by Lemma III.3 we have

mi+1 ≤ min F.

Since any element of F is also in Ni+3, by Lemma III.3 we also have

maxF ≤ mi+3 + 2d.
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Finally, it is clearly also true that
min F + #F − 1 ≤ max F.

Combining the three displayed inequalities proves this lemma.
Lemma III.10: For any positive integer i, and any integer k ≥ 2,

Ni ∩ Ni+2k+1 = ∅.
Proof: For an indirect proof, assume that Ni∩Ni+2k+1 is not empty. Then the method of the proof of Lemma III.9

goes through to show that
1 ≤ #(Ni ∩ Ni+2k+1) ≤ 2d + 1 − (mi+1 − mi+2k+1).

However, by repeated application of Lemma III.5, this implies

2k(N2 − 2d − 1) ≤ 2d.

This contradicts Convention III.1, thus proving our lemma.
Definition III.11: For any integer i ≥ 2, let

Hi = Ni−1 ∩ Ni+1.

For any integer i ≥ 3, let
Gi = Ni − Ni−2 − Ni+2.

Lemma III.12: For any integer i ≥ 2,

#Hi = #(Ni+1 ∩ Ni−1) ≤ N2/2.
Proof: Note that Hi is not empty as Ri ⊂ Hi. Since any element of Hi is also in Ni−1, by Lemma III.3 we have

mi ≤ min Hi.

Since any element of Hi is also in Ni+1, by Lemma III.3 we also have

maxHi ≤ mi+1 + 2d.

Finally, it is clearly also true that
min Hi + #Hi − 1 ≤ max Hi.

Combining the three displayed inequalities and using Lemma III.5, we obtain

#Hi ≤ 4d + 2 − N2,

which implies our lemma, since by Convention III.1 the right hand side is at most N 2/2.
Corollary III.13: For any integer i ≥ 3,

#(Gi ∩ Hi) ≤ #Gi/2.
Proof: Assume that i is odd (respectively even). Every column (resp. row) of Hi contains exactly N elements.

Therefore, Lemma III.12 implies that Hi has at most N/2 columns (resp. rows). Therefore, each row (resp. column) of
Gi can contain no more than N/2 elements of Hi. Since each row (resp. column) of Gi contains exactly N elements,
this implies that the size of Gi ∩ Hi is at most half the size of Gi, as asserted.

Lemma III.14: For any integer i ≥ 4,

N2 ≤ 8d + 4 + mi+3 + mi+2 − mi−1 − mi−2 + #Gi+1/2 + #Gi + #Gi−1/2.
Proof: We will prove the lemma by giving an upper bound on #Ni = N2.

By Lemmas III.7 and III.10, the set Ni is entirely contained in the union of the sets Ni−3, Ni−1, Ni+1 and Ni+3,
which union is in turn equal to the (disjoint) union of the sets Ni−3, Gi−1, Hi, Gi+1 and Ni+3. From Lemma III.9, we
immediately obtain

#(Ni ∩ Ni−3) ≤ 2d + 1 − (mi−2 − mi),

#(Ni ∩ Ni+3) ≤ 2d + 1 − (mi+1 − mi+3).

In order to estimate the remaining part of Ni, namely its intersection with Gi−1 ∪ Hi ∪ Gi+1, we need to decompose
Ni itself as the (disjoint) union Hi−1 ∪ Gi ∪ Hi+1. This way, we broke the remaining part of Ni into nine fragments.
Three of them can be disposed of in the following way:

#(Gi ∩ (Gi−1 ∪ Hi ∪ Gi+1)) ≤ #Gi.
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Four other fragments can be estimated from above using Lemma III.9 as follows:

#(Hi−1 ∩ (Hi ∪ Gi+1)) ≤ #(Ni−2 ∩ Ni+1) ≤ 2d + 1 − (mi−1 − mi+1),

#(Hi+1 ∩ (Hi ∪ Gi−1)) ≤ #(Ni+2 ∩ Ni−1) ≤ 2d + 1 − (mi − mi+2).

Finally, we can invoke Corollary III.13 twice to obtain

#(Gi−1 ∩ Hi−1) ≤ #Gi−1/2,

#(Gi+1 ∩ Hi+1) ≤ #Gi+1/2.

Summing all the displayed equations in this proof yields the assertion of the lemma.
Lemma III.15: For any integers t ≥ 3 and k ≥ 2, we have

2(#Gt + #Gt+4 + · · · + #Gt+4k−4) ≤ 4d + 2 + 2(mt − mt+4k−3) − 2(k − 1)N2.
Proof: Let X denote the (disjoint) union of the sets Gt, Nt+2, Gt+4, Nt+6, . . . , Nt+4k−6 and Gt+4k−4. By

Lemma III.3 (and since the mi form a decreasing sequence),

maxX ≤ mt + 2d,

mt+4k−3 ≤ min X.

We also have
min X + #X − 1 ≤ maxX.

Since each Ni has size N2, we also know that

#X = #Gt + #Gt+4 + · · · + #Gt+4k−4 + (k − 1)N2.

Combining the displayed (in)equalities and multiplying by two, we obtain our claim.
Proof: (Proof of Theorem I.1, lower bound.) Take some integer k ≥ 2.

First of all, sum the conclusion of Lemma III.14 with i taking each of the values 4, 5, 6, . . . , 4k + 3 to obtain

4kN2 ≤ 4k(8d + 4) + 2(#G4 + #G5 + · · · + #G4k+3) + µ+
1 − µ−

1 + γ. (1)

Here µ+
1 and µ−

1 involve values of various mi, specifically

µ+
1 = m4k+6 + 2m4k+5 + 2m4k+4 + 2m4k+3 + m4k+2,

µ−

1 = m6 + 2m5 + 2m4 + 2m3 + m2,

whereas γ involves various values of #Gi,

γ = #G3/2 − #G4/2− #G4k+3/2 + #G4k+4/2.

The sum of #Gi in (1) can be estimated from above by summing the conclusion of Lemma III.15 for each of t = 7,
t = 6, t = 5 and t = 4, to obtain

2(#G4 + #G5 + · · · + #G4k+3) ≤ 16d + 8 − 8(k − 1)N 2 + µ+
2 − µ−

2 , (2)

where

µ+
2 = 2m7 + 2m6 + 2m5 + 2m4,

µ−

2 = 2m4k+4 + 2m4k+3 + 2m4k+2 + 2m4k+1.

Now combining (1) and (2), we obtain

(12k − 8)N2 ≤ d(32k + 16) + (16k + 8) + γ + µ+
1 + µ+

2 − µ−

1 − µ−

2 . (3)

Note that by Lemma III.4, the absolute value of µ+
1 −µ−

2 is bounded above by 12d (as is the absolute value of µ+
2 −µ−

1 ).
It is also clear that the absolute value of γ is no bigger than N 2. Since none of these bounds depends on k, we may let
k tend to (positive) infinity in (3) and divide by 4k to obtain

3N2 ≤ 8d + 4,
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which implies

3N2/8− 1/2 ≤ d.

This contradicts Convention III.1, thereby completing our indirect proof of Theorem I.1.
In summary, we have shown that

3N2/8− 1/2 ≤ d.

Remark III.16: For odd N , the methods of Theorem I.1 extend to show that

3N2/8 + N/8− 1/2 ≤ d.
The proof of Theorem I.1 can be modified to prove Remark III.16 as follows. Changing the assertion in Convention III.1

according to Remark III.16, instead of the assertion of Lemma III.12 we can prove

#Hi = #(Ni+1 ∩ Ni−1) < N(N + 1)/2.

However, since #Hi must be divisible by N , this in fact implies

#Hi ≤ N(N − 1)/2. (4)

Using this, we can strenghten the claim of Lemma III.13 to

#(Gi ∩ Hi) ≤
N − 1

2N
#Gi.

Recall that by Lemmas III.7 and III.10, the set Ni of N2 elements is the disjoint union of Hi−1, Gi and Hi+1. There-
fore (4) also implies that

#Gi ≥ N,

which, with Lemma III.15, implies

N2/4 + N/4 ≤ lim
k→∞

mt+4k − mt

k
. (5)

Then the proof can proceed as before, though using (2) with a factor of 2− 1/N instead of 2, and finally utilizing (5)
to conclude that

3N2/8 + N/8− 1/4 ≤ d,

which contradicts the modified Convention III.1, thus proving Remark III.16.

IV. Minimizing the mean squared error

A. Outline of argument

We shall begin in Section IV-B by giving a lower bound on the row and column variances in an N -by-N square
arrangement. This proof is based on an algebraic inequality relating the average row or column variance to the variance
of the set of all numbers in the square.

In Section IV-C, we give an upper bound for the row an column variances by constructing appropriate square arrange-
ments. First we exhibit an explicit arrangement with relatively low row and column variances. Then we prove a lemma
that allows us to combine two arrangements with lower N into a single one with higher N , such that the row and column
variances of the bigger arrangement are well controlled by the row and column variances of the smaller arrangements.
We then use this combination lemma, along with arrangements for N ≤ 10 constructed by hand, to construct square
arrangements for any N with low row and column variances.

In Section IV-D, we revisit the issue of a lower bound for the row and column variances in square arrangements
by showing that the algebraic inequality used in Section IV-B cannot be sharp in this application. Upon refining our
inequality, this non-sharpness turns out to be related to the fact that the sum of two independent random variables
of (nearly) equal variance cannot be a (nearly) uniformly distributed random variable. We prove a theorem in this
direction and then use it to improve the lower bound given in Section IV-B slightly.

Section IV-E gives an upper bound for the row and column variances in the infinite case by construction. The
footprint of this construction is the same as the one in Section III-B, and we use the combination lemma and the square
arrangements of Section IV-C to fill the footprint.

Finally, in Section IV-F we prove a lower bound for the row and column variances in the infinite case by a more
involved version of the argument of Section IV-B combined with some ideas from Section III-C.
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B. A lower bound for the variance in a square

Theorem IV.1: Assume that the integers 1 through N 2 have been arranged in an N -by-N matrix P , and the variance
of numbers in any row or column is at most V . Then

(N4 − 1)/24 ≤ V.
The following theorem yields the crucial ingredient for the proof of Theorem IV.1.
Theorem IV.2: Let Xi,j (1 ≤ i, j ≤ N) denote the elements of an N -by-N matrix. Then

Var(X1,1, . . . , XN,N) ≤ 1

N

∑

i

Var(Xi,1, Xi,2, . . . , Xi,N ) +
1

N

∑

j

Var(X1,j , X2,j , . . . , XN,j). (6)

Proof: Substitute the definitions of all the variances into (6), multiply by N 4, and move all terms to the right side.
It is easy to check that the coefficients of the monomials on the right hand side are as follows. The coefficients of the
terms of form X2

i,j (where i and j need not be distinct) are (N − 1)2, the coefficients of the terms of form Xi,jXl,k (with
i 6= l and j 6= k) are 2, and the coefficients of the remaining terms (either Xi,jXi,k or Xi,jXl,j) are all 2(1− N). There
are no other terms.

This transformation shows that our assertion is equivalent to stating that a certain quadratic form in the variables
Xi,j is positive semi-definite. Let G denote the N 2-by-N2 matrix whose rows (resp. columns) are labeled with the
variables Xi,j that represents the quadratic form in question. The entries of G can be read off from the calculation
above. The diagonal entries are all (N − 1)2. The off-diagonal entry corresponding to row Xi,j and column Xl,k is 1 or
1 − N (respectively) depending on whether (i 6= l) ∧ (j 6= k) is true or not (respectively).

The matrix G is the Kronecker (tensor) square of an N -by-N matrix H whose diagonal elements are equal to N − 1,
and whose other elements are −1. Since this matrix H has eigenvalues 0 (singly) and N (repeated N − 1 times), the
matrix G has eigenvalues 0 (2N − 1 of them) and N 2 ((N − 1)2 of them). This proves our result.

Theorem IV.2 can be generalized to higher dimensions. This will be described in a forthcoming paper.
Proof: (Proof of Theorem IV.1.) An easy calculation shows that the variance of the integers from 1 through N 2 is

Var(1, 2, . . . , N2) = (N4 − 1)/12. (7)

Now we can apply Theorem IV.2 to our matrix P :

(N4 − 1)/12 ≤ 1

N

∑

i

Var(Pi,1, Pi,2, . . . , Pi,N ) +
1

N

∑

j

Var(P1,j , P2,j , . . . , PN,j). (8)

Since every row or column variance on the right hand side is at most V , the claim of the theorem follows immediately.

C. The upper bound for the variance in a square

Proof: (Proof of Theorem I.2, upper bound.) First, let N be any even integer and define the N -by-N matrix P
(containing the integers 1 through N 2) by

Pi,j =

{

(i − 1)N/2 + j if j ≤ N/2,
(i − 1)N/2 + j + (N2 − N)/2 otherwise.

(9)

It is easy to check that the variance of each row of P is N 4/16 + N2/48 − 1/12, and the variance of each column is
N4/48− N2/48.

This construction can also be used to give a construction with maximal variance N 4/16 + O(N3) for odd N . For any
odd N ,
• Step A. take the construction just given for N + 1;
• Step B. omit a row and a column to get to an N -by-N square; and
• Step C. apply the unique order-preserving bijection between the remaining numbers and the set {1, 2, . . . , N 2}.

In Step A, each row and column variance is bounded above by (N + 1)4/16 + O((N + 1)3) = N4/16 + O(N3), as
described for the case of even N above. In Step B, the variance of each row or column increases by no more4 than
a factor of 1 + 1/N , and is therefore still bounded above by N 4/16 + O(N3) (of course the constant hidden in the O
factor increased). Finally, Step C cannot increase variances either since no pairwise distances are increased between the
numbers (as stated in Lemma IV.10(iii) in Section IV-F), and therefore we can conclude that in our new arrangement,
the maximal variance obtained in any row or column will not exceed N 4/16 + O(N3).

4This follows from the general fact that if a set of n numbers has variance v then any subset of n − 1 numbers in it has variance no more
than nv/(n − 1).
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By checking all the possible arrangements, we can verify that the construction given above is optimal for N ≤ 2.
However, for any specific N over 2, it is easy to find an arrangement that has a lower maximal variance than the general
construction given above. For example, for N between 3 and 10, we have found arrangements5 with the following
maximal variances:

N 3 4 5 6 7 8 9 10
V 4.7 12.2 29.6 59.8 109.7 184.5 299.9 455.2

102V/N4 5.80 4.77 4.74 4.61 4.57 4.50 4.57 4.55

Concrete arrangements can be combined to form larger arrangements with relatively low maximal row/column vari-
ances. The following lemma (which is stated with enough generality to be of use in Section IV-E for infinite arrangements)
explains how.

Lemma IV.3: Assume that an arrangement A (resp. B) has exactly N (resp. N ′) integers in every row and column,
and that the maximal variance within a row or column is at most V (resp. V ′). The arrangement A must be an N -by-N
square, whereas the arrangement B can be either an N ′-by-N ′ square or infinite. Then there is an arrangement C with
exactly NN ′ integers in every row and column, and the maximal variance within a row or column is at most V + N 4V ′.
The arrangement C is square (of size NN ′-by-NN ′) or infinite depending as B is a square or is infinite.

Proof: Define Ci,j as follows. For

i = Na + i′, with i′ ∈ {1, 2, . . . , N},
j = Nb + j′, with j′ ∈ {1, 2, . . . , N},

where a and b are integers, set
Ci,j = Ai′ ,j′ + N2(Ba,b − 1).

It is then clear that

Var(Ci,·) = Var(Ai′ ,·) + N4Var(Ba,·) ≤ V + N4V ′,

Var(C·,j) = Var(A·,j′ ) + N4Var(B·,b) ≤ V + N4V ′,

which proves our lemma.
For example, if we apply Lemma IV.3 with A being the optimal arrangement for N = 2 (with V = 1), and B being

the optimal arrangement for N = 3 (with V ′ = 14/3), namely

A :
3 4
1 2,

B :
6 7 9
3 5 8
1 2 4,

we obtain

23 24 27 28 35 36
21 22 25 26 33 34
11 12 19 20 31 32
9 10 17 18 29 30
3 4 7 8 15 16
1 2 5 6 13 14,

with a maximal row/column variance of 227/3 ≈ 75.7.
Theorem IV.4: For any positive integer N , let V (N) be the smallest possible maximal variance in a row or column

when the numbers 1 through N2 are arranged in an N -by-N square. Then let c(N) be defined as

c(N) = V (N)/N4.

Then
(a) c(2N) ≤ c(N) + 1/(16N 4),
(b) c(N) ≤ c(N + 1)(1 + 1/N)5.

Proof: Part (a) follows from applying Lemma IV.3 to the optimal construction for 2 playing the role of A and the
optimal construction for N playing the role of B.

Part (b) follows from the argument given in the proof of the upper bound of Theorem I.2: take the optimal construction
for an (N + 1)-by-(N + 1) square, delete a row and a column, and adjust the remaining numbers (bijectively) to lie in
the interval [1, N2].

5These arrangements are available at www.csirik.net/square-variances.html.
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It is clear that the results of Theorem IV.4 can be used to improve the upper bound on all c(N) if sufficiently
good constructions are available for small N . For example, given arrangements for all integers from 1 through N0,
we can use Theorem IV.4(a) to give good arrangements for all even integers in the range [N0 + 1, 2N0], and then use
Theorem IV.4(b) to give good arrangements for all odd integers in the same range, while controlling the corresponding
c(N). This procedure can be iterated and will clearly give a universal upper bound on c(N), which would depend on
how good the initial set of arrangements were. Using this method and the constructions for N ≤ 10 given above, we
can get

c(N) < 1/20 (for N ≥ 4).

For example,

c(16) ≤ c(8) + 1/(16 · 84),

c(32) ≤ c(16) + 1/(16 · 164) ≤ c(8) + 1/(16 · 84) + 1/(16 · 164),

and so on, from which it follows that
c(N) ≤ 1/22 (for N = 2k ≥ 8,)

where k is of course meant to be an integer.

D. A better lower bound for the variance in a square

Since our construction does not agree with the lower bound given in Theorem IV.1, it is natural to ask whether
the theorem could be improved. The matrix P given in Section IV-C illustrates that it is possible for the result of
Theorem IV.1 to not be sharp, even though the result of Theorem IV.2 is sharp. The problem is that Theorem IV.1
allows us to give a lower bound for the average of the row and column variances of any square matrix P containing the
numbers 1 through N2, but for any particular matrix, either the inequality of Theorem IV.2 in not sharp, or the average
and the maximal row/column variances are not equal.

In this section, we will develop these ideas to improve the lower bound of Theorem IV.1 by a little bit. Larger
improvements should be possible by more tightly controlling the various estimates given below. First, we need the
following more precise version of Theorem IV.2.

Theorem IV.5: Let Xi,j (1 ≤ i, j ≤ N) denote the elements of an N -by-N matrix. Assume that
∑

i,j Xi,j = 0. Then

Var(X1,1, . . . , XN,N) +
1

N2

∑

i,j

R2
i,j =

1

N

∑

i

Var(Xi,1, . . . , Xi,N) +
1

N

∑

j

Var(X1,j , . . . , XN,j), (10)

where

Ri,j = Xi,j −
1

N

∑

k

Xi,k − 1

N

∑

k

Xk,j ,

for all 1 ≤ i, j ≤ N .
Proof: Adding (

∑

i,j Xi,j)
2/N4 to the right-hand side of (10), we get a polynomial identity that is easy to verify.

However, by assumption we have
∑

i,j Xi,j = 0, which yields the statement of the theorem.6

Let us now return to our matrix P . We will scale P to simplify our calculations. Define an N -by-N matrix U by
Ui,j = (Xi,j − (N2 + 1)/2)/N2. Thus

∑

i,j Ui,j = 0 and the elements of U all lie within [−1/2, 1/2]. Clearly, the biggest

row or column variance α in U will be equal to V/N 4 and all other interesting properties of P will be represented in U
too. We can write

U = F + G + R,

where each element of F is the average of the elements in the corresponding row of U , each element of G is the average
of the elements in the corresponding column of U , and R is defined as U − F − G.

Let us now consider the matrices U , F , G and R as random variables on the probability space SR × SC (where SR and
SC are N -element sets representing rows and columns, respectively) endowed with the uniform distribution. Because
P contains the integers from 1 through N 2, U is nearly uniformly distributed7 on the interval [−1/2, 1/2]. In this case,
Theorem IV.5 implies (recall that α denotes the maximal row/column variance that occurs in the matrix U)

Var(U) + E(R2) ≤ 2α. (11)

6We discovered the identity (10) by calculating the contribution of the component of X that lies outside of the 0-eigenspace of the matrix G
(in Theorem IV.1) to the value of the quadratic form defined by G.

7This approximation becomes more and more accurate as N tends to infinity.
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Let U•,j denote the average of all elements of row j in the matrix U . Then, for any 1 ≤ k ≤ N , the inequality between
the arithmetic and the quadratic means implies that





1

N

∑

j

Uk,j −
1

N

∑

j

U•,j





2

=





1

N

∑

j

(Uk,j − U•,j)





2

≤ 1

N





∑

j

(Uk,j − U•,j)
2



 .

Summing both sides over k and dividing by N , we obtain

Var(F ) ≤ 1

N

∑

j

Var(U1,j , U2,j , . . . , UN,j) ≤ α, (12)

and similarly
Var(G) ≤ α. (13)

Note that F and G are independent as random variables, since values of F are constant within rows and values of G
are constant within columns.

We can now see clearly why Theorem IV.1 cannot be sharp. If that bound was sharp, then (11) would imply that
R = 0 and thus

U = F + G.

Then (12) and (13) together with Var(U) = Var(F ) + Var(G) imply that

Var(F ) = Var(G) =
1

2
Var(U)

The non-sharpness of Theorem IV.1 in this point of view is related to (but does not yet immediately follow from) the
following general fact.

Fact IV.6: A random variable that is uniformly distributed on some interval of the real numbers cannot be a sum of
two independent random variables of equal variances.

This fact can be proved using the following lemma.
Lemma IV.7: Let F and G be independent real-valued random variables with EF = EG = 0, and let n2 = E(F +G)2

and n4 = E(F + G)4. Then a = EF 2 satisfies

4a2 + n4 ≥ n2(n2 + 4a).
Proof: We have (using EF = 0 to drop the cross term)

n2 = E(F + G)2 = EF 2 + EG2,

and hence
EG2 = n2 − a.

Clearly
EF 4 ≥ (EF 2)2 = a2

and
EG4 ≥ (EG2)2 = (n2 − a)2.

This implies that (again using EF = 0 and EG = 0 to drop some terms)

n4 = E(F + G)4 = EF 4 + 6(EF 2)(EG2) + EG4 ≥ a2 + 6a(n2 − a) + (n2 − a)2,

which rearranges to yield the statement of the lemma.
Proof: (Proof of Fact IV.6.) Without loss of generality, we can assume that our uniform distribution has mean 0,

and that it is written as a sum of independent random variables F and G of mean 0. Applying Lemma IV.7 with
a = EF 2 = EG2 = n2/2, we obtain

n4/n2
2 ≥ 2.

However, for a uniform distribution we have n4/n2
2 = 9/5, which shows that a decomposition of the proposed type is

not possible.
The general question of how a uniformly distributed random variable can be broken up as a sum of two independent

random variables has been studied extensively. For details, and a general characterization of those pairs of independent
random variables that sum to a uniform distribution, the reader is referred to [8, Section 1.4], [9], [10] and the references
contained therein. From the general characterization we can infer that if F and G are independent random variables
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with Var(F ) ≥ Var(G) and F + G is uniformly distributed, then Var(F )/Var(G) ≥ 3, and this is achieved only when F
is uniformly distributed over two discrete values, and G is uniformly distributed over a shorter interval.8

The following theorem is a more general version of Lemma IV.7 that allows us to cope with the fact that in our
application U is not exactly uniformly distributed, and that the variances of F and G are not exactly equal. It will
allow us to improve the lower bound given in Theorem IV.1.

Theorem IV.8: Let µ, λ be arbitrary positive real numbers. Let U , R, F and G be random variables of mean 0 with

U − R = F + G,

such that F and G are independent, EU 2 = m2, EU4 = m4, and assume that almost surely |U | < µ and |R| < λ.
If 0 < 2m2

2 − m4 then there is an ε = ε(m2, m4, µ, λ) > 0 such that the following inequalities cannot be satisfied
simultaneously:

EF 2 =
1

2
m2 + a, with |a| < ε, (14)

ER2 ≤ 2ε. (15)

(The proof of the theorem provides information about a way to determine such an ε(m2, m4, µ, λ).)
Proof: We will apply Lemma IV.7 to the random variables F and G. Accordingly, let us define

n2 = E(F + G)2 = E(U − R)2,

n4 = E(F + G)4 = E(U − R)4.

Note that E|R| ≤
√

ER2 ≤
√

2ε, so we can bound the difference between n2 and m2 as follows:

|n2 − m2| = |E(U − R)2 − EU2| ≤ 2|EUR| + ER2 ≤ 2µ
√

2ε + 2ε.

Similarly, we can obtain

|n4 − m4| ≤ 4|EU3R| + 6EU2R2 + 4|EUR3| + ER4 ≤ 4µ3
√

2ε + 6µ22ε + 4µλ2ε + µ22ε.

The crucial point in these inequalities is that

n2 = m2 + b, with |b| < f1(ε), (16)

n4 = m4 + c, with |c| < f2(ε), (17)

where f1 and f2 are continuous functions of ε, with value 0 when ε = 0.9

Now applying Lemma IV.7, we get
4(EF 2)2 + n4 ≥ n2(n2 + 4EF 2).

Using (14), (16), and (17), this transforms to

4a2 + c − 4m2b − b2 − 4ab ≥ 2m2
2 − m4. (18)

Estimating the left hand side from above (we can drop −b2 which is never positive, and estimate the absolute value of
the other four terms from above one-by-one, for example by |4a2| < 4(2ε)2 = 16ε2), we get

16ε2 + f2(ε) + 4µ|f1(ε)| + 8εf2(ε) ≥ 2m2
2 − m4.

By the hypothesis of the theorem, the right hand side here is positive. On the other hand, the left hand side is a
continuous function of ε, and is 0 when ε = 0, so we get a contradiction if ε is too small. This proves our theorem.

Theorem IV.9: Let N > 1. Assume that the integers 1 through N 2 have been arranged in an N -by-N matrix P , and
the variance of numbers in any row or column is at most V . Then

N4(1/24 + 10−7) − 1/24 ≤ V.
Proof: In terms of our scaled matrix U , we need to show that

1/24 + 10−7 − 1/(24N4) ≤ α.

8The best result in this direction implied by Lemma IV.7 is Var(F )/Var(G) ≥ (3 +
√

5)/2 = 2.62.
9The functions f1 and f2 also depend on µ and λ, but our notation supresses that for simplicity.
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Theorem IV.8 applies exactly, we just need to determine all the parameters. Since all elements of U lie in [−1/2, 1/2],
we have

|U | ≤ 1/2 = µ.

By construction, all elements of F and G must lie in [−1/2, 1/2] too, so we have

|R| ≤ 3/2 = λ.

A quick calculation shows that

2m2
2 − m4 =

1

720
+

1

72N2
− 11

720N4
,

which is positive for all N > 1 as required.
Now use (18) the proof of Theorem IV.8. We can substitute the values λ = 3/2 and µ = 1/2 and use the upper

bounds on a, b and c obtained in the proof of Theorem IV.8 to obtain

5
√

2

2

√
ε +

27

2
ε + 8

√
2ε
√

ε + 32ε2 >
1

720
+

1

72N2
− 11

720N4
.

Since the right hand side is a decreasing function of N for N > 3/2, and it tends to 1/720 at infinity, it is also true that

5
√

2

2

√
ε +

27

2
ε + 8

√
2ε
√

ε + 32ε2 >
1

720
.

This implies that ε > 1.53859× 10−7, thereby proving our theorem.
Since the last theorem proved was just the lower bound of Theorem I.2, we conclude that the proof of Theorem I.2 is

now also complete.

E. The upper bound for the variance

Proof: (Proof of Theorem I.3, upper bound.) We shall use Lemma IV.3 to construct assignments with small
maximal variances V . Suppose that N is even (odd N can be handled as in Section IV-C). Let A be an (N/2)-by-(N/2)
matrix with small maximal variance cA ·(N/2)4 (containing the numbers 1 through N 2/4). Let B be an (optimal) infinite
assignment of the integers to the infinite square grid where each line and column contains exactly two numbers.10 The
variance in any row or column of B is of course 1/4. Let us apply Lemma IV.3 to A and B. The result is an assignment
containing N numbers in each row and column, with a maximal row or column variance of

(

1

64
+

cA

16

)

N4.

Let us now consider what this gave us. In Theorem I.2, we gave an explicit construction for each N for an N -by-N
square of maximal variance N 4/16 + O(N4). Choosing this for A we get an upper bound of (5/256)N 4 + O(N3) =
(1/51.2)N4 + O(N3) for the infinite case. In Section IV-C we also showed that by blowing up examples for small N , we
can get squares with maximal variance no more than N 4/20. This gives us for the infinite case a construction with an
upper bound of (3/160)N4 = N4/53 1

3 .
Remark. For N which are powers of two, we can construct squares with maximal variances N 4/22 (see Section IV-C).

For the infinite case, this yields constructions with maximal variances of N 4/54.15. However, with this method we cannot
get close to the lower bound, because by Theorem I.2, the maximal variance for an N -by-N square is always at least
N4/24, but even a square of maximal variance N 4/24 would give an infinite construction with (7/384)N 4 = N4/54.857.
It is far from clear if the method described in this section gives the optimal construction. On the other hand, we believe
that the lower bound in Theorem I.3 is not sharp, either.

F. The lower bound for the variance

Let us fix N . Let us consider an assignment to the infinite grid, where each column and row contains N numbers, and
the maximum of the variances is (finite and) as small as possible. Let d denote the maximal spread of this assignment
and V the maximum of the variances of rows and columns. Trivially

d2

2N
≤ V.

If V > N4/2 then the lower bound of Theorem I.3 is satisfied, and there is nothing to worry about. Otherwise, we can
deduce that

d < N5/2.

10More precisely, assign 2n to the position (n, n) and 2n + 1 to position (n + 1, n).
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We say that the distance of two numbers in the assigment is 1 if they are in the same row or column. They are in
distance 2 from each other if they are not in the same line and there is a third number which is in distance 1 from both
numbers. In generally, two numbers are at distance k + 1 from each other if their distance is not ≤ k and there is a
third number which is at distance k from one of the numbers, and 1 from the other number. Denote B(k, x) the set of
numbers which are located within distance k from x, and let S(k, x) = B(k, x) \ B(k − 1, x). By definition of B(k, x),
we have

max{y|y ∈ B(k, x)} ≤ x + kd

and
min{y|y ∈ B(k, x)} ≥ x − kd,

hence
#B(k, x) ≤ 2kd + 1.

Since
∪k

i=0S(i, x) = B(k, x)

and the sets S(i, x) are disjoint from each other, there exist arbitrarily large integers k such that

#S(k, x) ≤ 2d. (19)

We shall need the following lemma.
Lemma IV.10: Let x1, . . . , xN , x, y, m be real numbers and N a positive integer. Then

(i)

Var(x1, . . . , xN ) =
N − 1

N2

∑

x2
i −

2

N2

∑

i<j

xi · xj .

(ii)
∑

i<j

(xi − xj)
2 = (N − 1)

∑

x2
i − 2

∑

i<j

xi · xj .

(iii)

Var(x1, . . . , xN ) =
1

N2

∑

i<j

(xi − xj)
2.

(iv)

(x − y)2 = 2(m − x)2 + 2(m − y)2 − 4

(

m − x + y

2

)2

.

(v)
N2

∑

i=1

(x − i)2 ≥ N6 − N2

12
.

(vi) Given A1, . . . , An, B1, . . . , Bn. Then

∑

i,j

(Ai − Bj)
2 =

∑

i<j

(Ai − Aj)
2 +

∑

i<j

(Bi − Bj)
2 + (A1 + · · · + An − B1 − · · · − Bn)2.

(vii) Fix a row R of the assigment. Then

∑

x∈R,y∈V (R)

(x − y)2 ≥ N7 − N3

12
+ N3Var(R).

Proof: (i) follows from definition. (ii), (iv) and (vi) are easy identities. (iii) follows from (i) and (ii). (v) follows
from Var(1, . . . , N2) = (N4 − 1)/12. To prove (vii), we shall use (v) with the remark that N(R) contains N 2 distinct
numbers. Let

m =
1

N2

∑

y∈N(R)

y.

Then we have
∑

x∈R,y∈V (R)

(x − y)2 =
∑

x∈R

∑

y∈V (R)

(x − y)2 =
∑

x∈R

∑

y∈V (R)

((x − m) + (m − y))2 =
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= N2
∑

x∈R

(x − m)2 + N
∑

y∈V (R)

(m − y)2 ≥ N3Var(R) +
N7 − N3

12
.

Now we are ready to start to prove the main result of the section.
Proof: (Proof of Theorem I.3, lower bound.) Fix a row R. Recall that C(z) denotes the column of the number z.

Let

Varx(R) =
1

N2

∑

xi∈R

(x − xi)
2. (20)

By Lemma IV.10(iii),
∑

x∈R

Varx(R) = 2Var(R). (21)

Consider the sum
S(R) =

∑

x∈R,y∈V (R)

(x − y)2. (22)

By Lemma IV.10(vii) we have

S(R) ≥ N7 − N3

12
+ N3Var(R) (23)

For the right hand side of (22) we apply Lemma IV.10(iv), with m = R ∩ C(y) (recall that V (R) denotes the numbers
within distance 1 from some element of R):

S(R) =
∑

x∈R,y∈V (R),z=R∩C(y)

(

2(x − z)2 + 2(y − z)2 − 4

(

z − x + y

2

)2
)

. (24)

For the first term of the summation from (24) we apply Lemma IV.10(iii):

2N
∑

x,z∈R

(x − z)2 = 4N3 · Var(R).

For the second term, from (20) we obtain

2N
∑

z∈R,y∈C(z)

(y − z)2 = 2N3
∑

z∈R

Varz(C(z)).

To handle the third term, we use Lemma IV.10(vi) with Ai = z − xi and Bi = −z + yj :

∑

x∈R

∑

z∈R

∑

y∈C(z)

4

(

z − x + y

2

)2

=
∑

x∈R

∑

z∈R

∑

y∈C(z)

(2z − x − y)
2

≥
∑

z∈R





∑

xi<xj∈R

(xi − xj)
2 +

∑

yi<yj∈C(z)

(yi − yj)
2



 = N3Var(R) + N2
∑

z∈R

Var(C(z)).

Combining the last three displayed statements, we get that

N7 − N3

12
+ N3Var(R) ≤ S(R) ≤ 3N3Var(R) + 2N3

∑

z∈R

Varz(C(z)) − N2
∑

z∈R

Var(C(z)).

We can conclude that
N4 − 1

12
≤ 2Var(R) + 2

∑

z∈R

Varz(C(z)) − 1

N

∑

z∈R

Var(C(z)). (25)

Similarly, if R is any column, we get

N4 − 1

12
≤ 2Var(R) + 2

∑

z∈R

Varz(R(z)) − 1

N

∑

z∈R

Var(R(z)), (26)

where R(z) of course stands for the row of the number z.
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Let us now use the word line to mean either a row or column. Let k be a large integer with

#S(k, x) ≤ 2d. (27)

Consider the complete set of lines containing an element of B(k − 1, x). Let call the cardinality of this set t. For each
of these rows (resp. columns), add up the statement of equation (25) (resp. equation (26)) for that row (resp. column).
The number of lines which are not entirely contained in B(k − 1, x) is at most 4d, because such lines must each contain
an element of S(k, x), and any element of S(k, x) can only be contained in two such lines (a row and a column). In the
large sum, on the left hand side we get t(1/12)(N 4 − 1).

In order to calculate the right hand side of the large sum, we consider the lines contained in B(k − 1, x) separately
from the lines that only intersect B(k−1, x) (the latter category only contains at most 4d lines). If R is a row contained
in B(k − 1, x), Var(R) will be contained with multiplicity 5 on the right hand side of the large sum, namely,
• the first term of the right hand side of (25) yields Var(R) with multiplicity +2;
• the second term of the right hand side of (26) yields Var(R) with multiplicity +4 (we get a term from each of the

columns intersecting R and combine them using (21);
• the third term on the right hand side of (26) yields Var(R) with multiplicity −1.

Similarly, for any column R contained in B(k − 1, x), we get Var(R) on the right hand side of the large sum with
multiplicity 5.

Each of the at most 4d lines not entirely contained in B(k − 1, x) contributes at most 2N + 1 terms to the right hand
side of the large sum, and each of these terms is bounded in absolute value independently of k. Thus, letting k tend to
infinity11, we obtain that the lim inf of the average variance of the lines intersecting B(k − 1, x) is at least (N 4 − 1)/60.
Thus, there must be at least one row or column whose variance is at least (N 4 − 1)/60. This concludes the proof of our
theorem.
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