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Abstract. We give a new proof of the isomorphism between the dualizing
sheaf and the canonical sheaf of a non-singular projective variety X over a
perfect field k. Our proof uses concepts and results from algebraic number
theory.

1. Introduction

Recall the definition of a dualizing sheaf from [3, III, 7]. If X is a proper scheme
of dimension n over a field k, a dualizing sheaf for X is a coherent sheaf ω on X ,
together with a trace morphism t : Hn(X, ω) → k such that for all coherent sheaves
F on X , the natural pairing

Hom(F , ω) × Hn(X,F) → Hn(X, ω)

followed by t gives an isomorphism

Hom(F , ω)
∼
→Hn(X,F)′.

If a dualizing sheaf for X exists, then it is unique up to canonical isomporphism by
[3, III, 7.2].

An explicit calculation shows that P
n has a dualizing sheaf ωPn . If X is any

projective variety over a perfect field k, then a dualizing sheaf ωX exists and can
be constructed as follows. By Noether normalization, there is a finite separable
morphism f : X → P

n. Then ωX = f !ωPn is a dualizing sheaf for X , where f ! is
a functor whose definition is given in Section 2. This construction readily leads to
a proof of the Serre duality theorem [3, III, 7.6], different from the one given in [3,
III, §7].

In Section 3, which is the main part of this paper, we give a direct proof that the
dualizing sheaf ωX constructed above is isomorphic to the canonical sheaf if X is
nonsingular. The proof uses a number of facts about Dedekind domains and discrete
valuation rings. In particular, the theory of the different plays an important role.
The reader familiar with algebraic number theory will find the present approach an
intriguing alternative to the homological methods used in [3, III, §7]. Yet another
proof of our main result, Corollary 9, can be found in [4, 5].

All references in round brackets will be to [3].
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2. Serre duality

Let f : X → Y be a finite morphism of noetherian schemes. For any quasi-
coherent sheaf G on Y , the sheaf HomY (f∗OX ,G) is a quasi-coherent f∗OX -module,
so it corresponds to a quasi-coherent OX -module that we shall call f !G (see (III,
Ex. 6.10(a))). Before we go on, let us consider the case where f : X = Spec B →
Y = Spec A corresponds to f# : A → B. For some terminology, if A and B
are any commutative rings, with N ∈ A-Mod and M ∈ (A, B)-BiMod, we define
HomA(M, N) to be the usual Hom but with the obvious B-module structure derived
from M . Then the functor f ! corresponds to HomA(B,−).

Returning to the general (not necessarily affine) case, the functor f ! behaves like
a right adjoint to f∗ in the sense that for any F ∈ Coh(X) and G ∈ Qco(Y ), there
is a natural isomorphism

f∗HomX(F , f !G) → HomY (f∗F ,G)(1)

(see (III, Ex. 6.10(b))). Taking global sections in (1), we obtain the isomorphism

HomX (F , f !G) ∼= HomY (f∗F ,G).(2)

For future reference, note that a simple calculation using (II, Ex. 5.2) gives the
following lemma:

Lemma 1. Let f : X → Y be a finite morphism of noetherian schemes, and M a
locally free sheaf on Y . Then

f !M ∼= f !OY ⊗OX
f∗M.(3)

We now sketch how the Serre duality theorem (III, 7.6) can be proved for an
integral projective scheme X of dimension n over a perfect field k using the functor
f !. Let us first recall the following lemma.

Lemma 2 (Noether Normalization). Let X be an integral projective scheme of di-
mension n over a perfect field k. Then there exists a finite separable morphism
f : X → P

n.

Proof. By (I, 4.8A), K(X)/k is separably generated, so by (I, 4.7A) it contains
a separating transcendence base, yielding an injection K(Pn) = k(Y1, . . . , Yn) ↪→
K(X). By (I, 4.4), this gives a dominant morphism f : X → P

n, which is finite
and separable, since K(X)/K(Pn) is. �

Now let X be as above. By Lemma 2, there exists a finite separable morphism
f : X → P

n. We define ωX := f !ωPn , where ωPn is the dualizing sheaf for P
n (see

(III, 7.1)). By (III, Ex. 7.2), ωX is a dualizing sheaf for X . (Note that by (III,
7.2), any two dualizing sheaves for X are canonically isomorphic, so ωX does not
depend on the choice of f .) Since f is flat if and only if X is Cohen–Macaulay by
[2, Exer. 18.17 (or Cor. 18.17)], the Serre duality theorem (III, 7.6) now follows
from (III, Ex. 6.10).

3. The dualizing sheaf

Now we will show that the dualizing sheaf ωX := f !ωPn is in fact the canonical
sheaf on a nonsingular (noetherian) projective scheme X . Recall from (III, 7.1)
that for P

n, the canonical sheaf
∧n

ΩPn is the dualizing sheaf. Before stating our
next lemma, we need to recall the following definition.
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Definition 3. If T is a torsion sheaf on a normal noetherian scheme X, we define
the ramification divisor of T to be

R =
∑

Z

lengthOζ
(Tζ) · Z,

where the sum ranges over all the irreducible closed subschemes Z of codimension
one in X, and ζ denotes the generic point of Z.

Lemma 4. Let X be a normal noetherian scheme. Suppose F and G are locally
free sheaves of rank n on X and that T is a torsion sheaf on X with ramification
divisor R, such that the sequence

0 −−−−→ F −−−−→ G −−−−→ T −−−−→ 0

is exact. Then
∧n

G ∼=
∧n

F ⊗ L(R).

Proof. We make the following definition: if M is a module of finite length
over some commutative ring A, then we denote by χA(M) the product of the
(not necessarily distinct) primes occuring in a Jordan-Hölder series for M. (For
noetherian integrally closed domains, this χA is the canonical map from the category
of finite length A-modules to its Grothendieck group, which is the group of ideals
of A. See [7, I §5] for details.) Also note that since X is normal, it makes sense to
talk about Weil divisors on X .

We now begin the proof of the lemma. Taking nth exterior powers, we get an
exact sequence

0 −−−−→
∧n

F
det

−−−−→
∧n

G −−−−→ C −−−−→ 0.

Since
∧n

G is locally free of rank 1, we can tensor by its dual to get an exact sequence

0 −−−−→
∧n

F ⊗ (
∧n

G)
−1

−−−−→ OX −−−−→ C ⊗ (
∧n

G)
−1

−−−−→ 0.

But then
∧nF⊗ (

∧nG)
−1

equals (as subsheaves of OX) ID, the ideal sheaf of some
locally principal closed subscheme of X corresponding to an (effective) Cartier
divisor D, and hence C ∼= (

∧n
G) ⊗OD.

If we let C(X) be the group of Cartier divisors on X , then there is an injection
C(X) ↪→ Div(X), where Div(X) is the group of Weil divisors. We claim that R = D
as Weil divisors. It suffices to show that nZ = n′

Z for each prime divisor Z of X ,
where nZ denotes the coefficient of Z in R, and n′

Z denotes the coefficient of Z in
D. Fix one such Z, and denote by ζ its generic point. Then the local ring Oζ is a
discrete valuation ring, and we have the following exact sequences of Oζ-modules:

0 −−−−→ Fζ
u

−−−−→ Gζ −−−−→ Tζ −−−−→ 0

and

0 −−−−→
∧n

Fζ
det u

−−−−→
∧n

Gζ −−−−→ Cζ −−−−→ 0.

By the theory of modules over a principal ideal domain, we have

nZ = lengthOζ
Tζ = lengthOζ

(cokeru) = vZ

(

χOζ
(cokeru)

)

,

where vZ denotes the valuation on the local ring Oζ . By [7, I, §5, Lemma 3], we
have χOζ

(cokeru) = β · Oζ , where β · Oζ is the image of det u. So nZ = vZ(β) =
lengthOζ

(OD)ζ = n′
Z as claimed. This shows that D = R as Weil divisors, and
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hence as Cartier divisors; in particular, R is a well-defined Cartier divisor! We
conclude that

L(−R) ∼= ID
∼=

n
∧

F ⊗

(

n
∧

G

)−1

,

so
∧n

G ∼=
∧n

F ⊗ L(R). �

Remark: Using the terminology of (II, Ex. 6.11(b)), we have proved that the
determinant det T of our sheaf T is isomorphic to L(R).

We now want to prove the following:

Theorem 5. Let f : X → Y be a finite separable morphism between integral non-
singular schemes of dimension n. Then

Ωn
X

∼= f !Ωn
Y .

Proof. What we will end up doing is proving in a slightly roundabout way that

Ωn
X

∼= f∗Ωn
Y ⊗L(R)(4)

and

f !Ωn
Y
∼= f∗Ωn

Y ⊗L(R)(5)

for the same “ramification divisor” R.
Let us first try to prove (4). By (II, 8.11), we have an exact sequence

f∗ΩY → ΩX → ΩX/Y → 0.

Now ΩX is locally free of rank n on X , and ΩY is locally free of rank n on Y , so
f∗ΩY is locally free of rank n on X (since f∗OY = OX ). As f is a finite separable
morphism, K(X)/K(Y ) is a finite separable extension so by [6, Thm. 25.3], we get
ΩK(X)/K(Y ) = 0. Hence ΩX/Y is a torsion sheaf. Now letting K be the kernel of
f∗ΩY → ΩX , we get an exact sequence at each point P of X

0 → KP → On
P → On

P → (ΩX/Y )P → 0.

Tensoring this sequence with K(X), which is flat over OP , we get

dimK(X) KP ⊗ K(X) = −n + n + dimK(X)(ΩX/Y )P ⊗ K(X) = 0,

so KP is torsion. But KP ⊆ On
P , and OP is an integral domain, so we have K = 0,

i.e.

0 → f∗ΩY → ΩX → ΩX/Y → 0.

Now taking the ramification divisor R associated to ΩX/Y , we have

Ωn
X

∼= f∗Ωn
Y ⊗L(R)

by Lemma 4, proving (4). Assertion (5) will be proved as Lemma 8. �

In order to prove Lemma 8, some further preparation is needed. Let f : X → Y
again be a finite separable morphism between nonsingular irreducible schemes X
and Y . Then X is in particular Cohen-Macaulay, so f∗OX is a locally free OY -
module (and also is an OY -algebra via f#).

We want to define an OY -linear “trace” map Tr : f∗OX → OY as follows. On
any sufficiently small affine open U = Spec A ∈ Y , we have f−1U = Spec B affine,
and B is a free A-module of rank d := deg f . Let {e1, . . . , ed} be a basis for B
over A, and for b ∈ B write bei =

∑

aijej . Then we can set Tr(b) :=
∑

aii on
B, which is independent of the chosen basis, so the local maps defined in this way
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glue properly to give a global map of sheaves on X . (For further discussion see [1,
Chapter VI, Remark 6.5].)

By (2), the map Tr ∈ HomY (f∗OX ,OY ) gives rise to a map Tr ∈ HomX(OX , f !OY ).
We will be interested in the cokernel F of the morphism Tr. We first collect some
facts about Dedekind rings and then prove a proposition characterizing the sheaf
F .

Lemma 6. Let A and B be Dedekind domains with fraction fields K and L, re-
spectively. Suppose that L is finite separable over K, with B the integral closure of
A in L. Then

(a) B ⊗A K = L

(b) HomA(B, A) ↪→ HomK(L, K)

(c) If I, J are fractional ideals of B, I/IJ ∼= B/J .

(d) If M is a torsion B-module, then M may be written uniquely in the form
M = B/I1⊕· · ·⊕B/Im, where I1 ⊆ · · · ⊆ Im is an ascending sequence of nontrivial
ideals of B.

Proof. (a) Both L and B ⊗A K can be characterized as the integral closure
of K in L; (b) follows from (a); (c) is an exercise for the reader; (d) see [2, Ex.
19.6(c)]. �

Proposition 7. Tr is injective, and its cokernel F is a torsion sheaf. Moreover,
the ramification divisor of F is equal to the ramification divisor of ΩX/Y .

Proof. We begin with a sequence of reductions. Since the statement of the
lemma is of local nature and f is a finite morphism, we can assume that Y = Spec A
and X = Spec B. In fact, it suffices to prove the proposition after localizing at a
height 1 prime of A; we may thus assume that (A, m) is a discrete valuation ring
and B is a semilocal ring with maximal ideals {p1, . . . , pr} dominating m. As f
is surjective (and hence dominant), f# : A → B is injective, so we may assume
without loss of generality that A ⊆ B.

By the equivalence of categories between B-modules and quasicoherent sheaves
on Spec B, we find that the exact sequence

OX
Tr

−−−−→ f !OY −−−−→ F −−−−→ 0(6)

corresponds to an exact sequence of B-modules

B
Tr

−−−−→ B∗ −−−−→ M −−−−→ 0,(7)

where B∗ = HomA(B, A).
The image of 1 ∈ B under Tr is easily seen to be Tr ∈ B∗. If we let K and L

denote the fields of fractions of A and B respectively, then L/K is separable (since
f is), so Tr 6= 0 ∈ B∗ by [7, III, §3]. This shows that Tr is injective.

Let K and L be the fraction fields of A and B, respectively. Note that K = K(Y )
and L = K(X). By assumption A is Dedekind, and since B is finite over A it is
integral over A. But X is nonsingular, hence normal, so B is integrally closed and
thus is the integral closure of A in L. By (I, 6.3A) B is also a Dedekind ring,
so applying Lemma 6 it follows that B ⊗A K = L, and that we have an injection
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B∗ = HomA(B, A) ↪→ HomK(L, K). But HomK(L, K) can be canonically identified
with L via

L
∼
→ HomK(L, K)

x 7→ (l 7→ TrL/K(xl)).

Under this identification, B∗ corresponds to

B† = {x ∈ L : TrL/K(xB) ⊆ A} ⊆ L.

Here B† is a fractional ideal of B containing B; its inverse, the different DB/A, is
an integral ideal of B [7, III, §3]. By Lemma 6(c), we have

B†/B ∼= B/DB/A.

Note also that since B is a Dedekind ring, B∗ is locally free of rank 1 as a B-module.
Hence f !OY is a locally free sheaf of rank 1, and we in fact see that F is a torsion
sheaf in (6):

0 −−−−→ OX −−−−→ f !OY −−−−→ F −−−−→ 0.(8)

We now claim that lengthOζ
(ΩX/Y )

ζ
= lengthOζ

Fζ for all ζ corresponding to

generic points of prime divisors Z on X . So we have to show that

lengthBp
Mp = lengthBp

(ΩB/A)
p

(9)

for height 1 primes p ⊆ B, i.e. p1, . . . pr. But this follows from [8, Theorem 4.1(1)].
(Note that since L/K is separable, ΩB/A⊗B L = ΩL/K = 0, hence ΩB/A is a torsion
B-module.) �

Remark: By Lemma 6(d), we must have ΩB/A =
⊕t

1 B/Ii for some ideals Ii in

B. Then we can see from [8] that DB/A can be expressed as DB/A =
∏t

1 Ii.
Remark: Note that if we knew that all k(ζ)/k(η) were separable (where η ∈ Y

corresponds to m ∈ Spec A), then we could apply [7, III, §7 Prop. 14] to obtain this
result.

We have all the components in place now for the proof of (5):

Lemma 8. Let R be the ramification divisor of F (which, by Proposition 7, is the
same as the ramification divisor of ΩX/Y ). Then the following isomorphism holds.

f !Ωn
Y
∼= f∗Ωn

Y ⊗L(R).

Proof. Using the short exact sequence (8), we obtain, by Lemma 4,

f !OY
∼= L(R).

Tensoring this isomorphism on both sides by the sheaf f ∗Ωn
Y , we see that

f !OY ⊗OX
f∗Ωn

Y
∼= f∗Ωn

Y ⊗L(R).

But since Ωn
Y is locally free, by Lemma 1 we get

f !Ωn
Y
∼= f∗Ωn

Y ⊗L(R).

�

This establishes (5), so the proof of Theorem 5 is now complete.

Corollary 9. Let X be a nonsingular projective variety of dimension n over k.
Then ωX

∼= Ωn
X .
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Proof. Let f : X → P
n be a finite separable morphism whose existence is

guaranteed by Lemma 2. By definition, ωX
∼= f !ωPn . But ωPn ∼= Ωn

Pn . The result
now follows from Theorem 5. �
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