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1. Introduction

The purpose of this paper is to develop some of the theory from R. Hartshorne’s
Algebraic Geometry [5, III, §7] using different techniques. A sketch of our method,
which is due to Professor Hartshorne, is as follows. By Noether normalization,
an integral projective scheme X of dimension n over a perfect field k admits a
finite separable morphism to P

n
k . This morphism is flat if and only if X is Cohen-

Macaulay. If f : X → Y is any finite morphism of noetherian schemes, we define
a functor f ! : Qco(Y ) → Qco(X) and show that HomX(F , f !G) ∼= HomY (f∗F ,G)
(for F a coherent sheaf and G a quasi-coherent sheaf). We then prove that if
f : X → P

n is a finite morphism, then ωX := f !ωPn is a dualizing sheaf for X ,
where ωPn = OPn(−n− 1). From this the Serre duality theorem follows.

Finally, we prove that the dualizing sheaf ωX is isomorphic to the the canonical
sheaf if X is nonsingular. This part of the paper utilizes a number of facts about
Dedekind domains and discrete valuation rings. In particular, the theory of the
different comes in at a crucial moment.

The present approach has several features which make it attractive. For one
thing, our approach is very “geometric” in the sense that the dualizing sheaf of X
is defined directly from a finite morphism f : X → P

n. Also, we use a geometric
characterization of the Cohen-Macaulay property as equivalent to the flatness of
f . Finally, our approach to differentials provides an interesting link to some of
the important concepts of algebraic number theory; the reader familiar with this
theory (as found, for example, in [7]), may find the present method an intriguing
alternative to the homological proof found in [5, III, Thm. 7.11].

All references in round brackets will be to [5].

2. Serre duality

Let f : X → Y be an affine morphism of schemes. Then f is quasicompact and
separated; therefore, by (II, 5.8), f gives rise to a functor f∗ : Qco(X) → Qco(Y ).
In fact, we have that for any f ∈ Qco(X), f∗F is an f∗OX -module.

We want to cook up a functor˜: Qco(Y )∩f∗OX -Mod → Qco(X) going the other

way. Given any G ∈ Qco(Y ) ∩ f∗OX -Mod, define G̃ ∈ Qco(X) in the following
way. Pick an open affine U = SpecA ⊆ Y . Then since f is affine, f−1U is affine,
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say SpecB. Since G is an f∗OX -module, G = Γ(U ,G) is not only an A-module,

but also a B-module via f#. Now on SpecB we can define G̃|SpecB to be G̃. It is

easily seen that the various G̃’s defined on open affines in X patch to give a sheaf
G̃ ∈ Qco(X). [For details, see [4, §1.4].]

Observe that f∗ and˜define an equivalence of categories. For F ∈ Qco(X), if

F = F̃ on SpecB then f∗F is again F̃ on SpecA (with F viewed as an A-module),

and so f̃∗F ∼= F on SpecB, hence on all ofX . Likewise, if G ∈ Qco(Y )∩f∗OX -Mod,

then G = G̃ on SpecA, and G also has a B-module structure making G̃ = G̃ on
SpecB, and so f∗(G̃) ∼= G.

It will be convenient to give a quick proof here of the following fact:

Lemma 1. Let Y be a noetherian scheme. If G = M̃ ∈ Qco(Y ) and F = Ñ ∈
Coh(Y ) then we have HomX (F ,G) ∈ Qco(Y ). Furthermore, HomX(F ,G) = Hom(N,M )̃.

Proof. By (II, Ex. 5.4) we have locally an exact sequence

OY
m −−−−→ OY

n −−−−→ F −−−−→ 0

to which we can apply the left exact functor HomY (−,G) to obtain HomX(F ,G)
as the kernel of a map Gn → Gm of quasi-coherent sheaves. But HomX(F ,G) =

HomX(Ñ , M̃) ∈ Qco(Y ) implies, by (II, 5.5) that this sheaf is just the twiddle of

its global sections Hom(N,M), i.e., HomX(Ñ , M̃) ∼= Hom(N,M )̃. �

Construction of f ! Now let f : X → Y be a finite morphism of noetherian
schemes. By (II, Ex. 5.5(c)), there is a corresponding functor f∗ : Coh(X) →
Coh(Y ). It will be important for what follows for us to define a sort of adjoint to f∗
which we will call f ! : Qco(Y ) → Qco(X). First observe that any finite morphism
is affine, so we can employ the operation˜defined above. Since f is finite, f∗OX

is coherent, so for any G ∈ Qco(Y ), the sheaf HomY (f∗OX ,G) is quasi-coherent
by Lemma 1 and is also clearly an f∗OX -module. Thus it makes sense to define
f !G = HomY (f∗OX ,G)˜.

The Affine Case Before we go on, let us consider what our functors f∗, ,̃ and f !

do in the case where f : X = SpecB → Y = SpecA corresponding to f# : A→ B.
For some terminology, if A and B are any commutative rings, with N ∈ A-Mod and
M ∈ (A,B)-BiMod, we define HomA(M,N) and N⊗AM to be the usual Hom and
tensor product but with the obvious B-module structure derived from M . Observe
then that

−⊗B M a HomA(M,−)(1)

by [1, Thm. 7.2.20]. (The notation F a G denotes an adjunction between the
functors F and G with F as the left adjoint and G as the right.)

The functor˜is “for any A-module which is also a B-module in a manner com-
patible with f !, consider it as a B-module.” f∗, on the other hand, is the functor
“consider B-modules as A-modules” . It can be described alternatively as −⊗B B
(with the A-module structure derived from B) or HomB(B,−). Thinking of f∗ in
the latter interpretation, it has by (1) a left adjoint −⊗AB which is usually called
f∗.

Considering f∗ in its tensor product avatar gives it a right adjoint HomA(B,−),
which we recognize as corresponding exactly to our functor f !. Since f is finite, B
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is finitely generated over A, so B̃ is a coherent sheaf on Y = SpecA. Again using
Lemma 1 we get that indeed f ! corresponds to HomA(B,−).

Note also that for locally free sheaves M on Y , f ! is particularly easy to compute:

Lemma 2. Let f : X → Y be a finite morphism of noetherian schemes, and M a
locally free sheaf on Y . Then

f !M ∼= f !OY ⊗OX
f∗M.(2)

Proof. Since f∗ and˜define an equivalence of categories, we have

f !OY ⊗OX
f∗M ∼= (f∗(f

!OY ⊗OX
f∗M))̃,

but by the projection formula (II, Ex. 5.2(d))

(f∗(f
!OY ⊗OX

f∗M))̃ ∼= (f∗(f
!OY ) ⊗OY

M)̃.

Now by the definition of f ! and the definition of the dual of an invertible sheaf,

(f∗(f
!OY ) ⊗OY

M)̃ ∼= ((f∗OX)∨ ⊗OY
M)̃,

and finally by (II, Ex. 5.2(b)),

((f∗OX)∨ ⊗OY
M)̃ ∼= (HomY (f∗OX ,M))̃ ∼= f !M,

so the formula (2) is valid. �

We will now prove:

Lemma 3. For any F ∈ Coh(X) and G ∈ Qco(Y ), we have

f∗HomX(F , f !G) ∼= HomY (f∗F ,G).(3)

Observe that by taking global sections of both sides in (3), we obtain the corre-
spondence

HomX(F , f !G) ∼= HomY (f∗F ,G)(4)

mentioned in the introduction.
Proof. To prove (3), we will construct a map going from the left hand side to

the right, and check locally that it is an isomorphism. We will build our map up
in several steps. First of all, setting H = f !G, we have the usual map

f∗HomX(F ,H) → HomY (f∗F , f∗H),(5)

which on an open set U ⊆ Y is the map sending φ ∈ HomOX |
f−1U

(F|f−1U ,H|f−1U )

to ψ ∈ HomOY |U (f∗F , f∗H), where ψW : F(f−1W) → H(f−1W) is defined as
φf−1W for all open W ⊆ U .

We now see that

f∗f
!G = f∗((HomY (f∗OX ,G))˜) ∼= HomY (f∗OX ,G)

by the equivalence of categories given by˜and f∗. This gives us

HomY (f∗F , f∗f
!G)

∼
→HomY (f∗F ,HomY (f∗OX ,G)).(6)

Now f∗OX is an OY -algebra through the map f# : OY → f∗OX . By the con-
travariant functoriality of Hom in the first variable, this gives us an evaluation
map

HomY (f∗OX ,G) → HomY (OY ,G) = G.
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By the covariant functoriality of HomY in the second variable, we get a map

HomY (f∗F ,HomY (f∗OX ,G)) → HomY (f∗F ,G).(7)

Composing (5), (6) and (7) (with H = f !G as before), we obtained the desired
natural morphism

f∗HomX(F , f !G) → HomY (f∗F ,G).(8)

To check that this is an isomorphism locally, we can restrict our attention to the
case Y = SpecA,X = SpecB (with B an A-algebra via f !), F = M̃ , with M a

finitely generated B-module, and G = Ñ , withN an A-module. Then the morphism
(8) corresponds to the natural map

ψ : HomB(M,HomA(B,N)) → HomA(M ⊗B B,N)

φ 7→ (m⊗ 1 7→ φ(m)(1)).

(Recall that M ⊗B B is just M considered as an A-module via the given map
A→ B.) But we know this map to be an isomorphism by (1). �

Proposition 4. Let f : X → Y be a finite morphism of noetherian schemes. Then
for all F ∈ Coh(X),G ∈ Qco(Y ), and all i ≥ 0, there is a natural map

Exti
X(F , f !G) → Exti

Y (f∗F ,G).

Remark: The isomorphism of Lemma 3 is the case i = 0 here.

Proof. The map (5) is natural in the second variable H, so it can be considered
a natural transformation of functors. Composing with the global sections functor
Γ, we get the natural transformation of functors

HomX(F ,−) → HomY (f∗F , f∗−).

The second functor here is just the composition of the exact functor f∗ and the ze-
roeth component of the universal δ-functor Exti

Y (f∗F ,−). Hence HomY (f∗F , f∗−)

is the zeroeth component of the δ-functor Exti
Y (f∗F , f∗−). But since HomX(F ,−)

is the zeroeth component of its derived functor, the universal δ-functor Exti
X(F ,−),

the natural transformation above extends to a natural map of δ-functors

Exti
X(F ,−) → Exti

Y (f∗F , f∗−).

We can now substitute f !G to get a natural map

Exti
X(F , f !G) → Exti

Y (f∗F , f∗f
!G).

In the proof of Lemma 3 we described the natural map f∗f
!G ∼= HomY (f∗OX ,G) →

G. Using the covariant functoriality of Exti
Y in the second variable, we get the

natural map

Exti
Y (f∗F , f∗f

!G) → Exti
Y (f∗F ,G).

The composition of the last two displayed maps gives our desired map. �

Proposition 5. With the conditions of Proposition 4, if in addition Coh(X) has
enough locally frees and f is flat, then the natural map

Exti
X(F , f !G) → Exti

Y (f∗F ,G)

is an isomorphism for all F ∈ Coh(X),G ∈ Qco(Y ), i ≥ 0.
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Remark: If X is a quasi-projective scheme, or a nonsingular scheme, then
Coh(X) has enough locally frees. Also, by (III, Prop. 9.2(e)), f is flat if and only if
f satisfies the condition

(*) f∗OX is a locally free OY -module.

Proof. For F = OX we have (III, 6.3(c))

Exti
X(OX , f

!G) ∼= H i(X, f !G),

but since f is an affine map, we see using (III, Ex. 4.1) that

H i(X, f !G) ∼= H i(Y, f∗f
!G) = H i(Y,HomY (f∗OX ,G)).

Now, using (II, Ex. 5.1(b)) and the fact that f∗OX is locally free, we see that

H i(Y,HomY (f∗OX ,G)) ∼= H i(Y, (f∗OX)∨ ⊗ G),

and again by (III, 6.3(c)) we have

H i(Y, (f∗OX)∨ ⊗ G) ∼= Exti
Y (OY , (f∗OX)∨ ⊗ G).

By (III, 6.7), again using condition (*), we have

Exti
Y (OY , (f∗OX)∨ ⊗ G) ∼= Exti

Y (f∗OX ,G).

It is an exercise for the reader to verify that the composite of these isomorphisms
is our natural map! This shows that our claim is true for F = OX .

It is clear now that the claim is also true if F is a free OX -module of finite rank.
In fact it is also true for F locally free of finite rank, since we are given a global map
and verifying that it is an isomorphism may be done locally, which comes down to
the calculation we have just done.

Since Coh(X) has enough locally frees and F is coherent, we can find a locally
free sheaf E of finite rank that surjects onto F . Calling the kernel R, we have a
short exact sequence

0 → R → E → F → 0

of coherent sheaves on X . Taking f∗ of this sequence, we get a short exact sequence
of coherent sheaves on Y :

0 → f∗R → f∗E → f∗F → 0.

(Note that f∗ : Coh(X) → Coh(Y ) is exact since it has a right adjoint f !). Taking
HomX(−, f !G) of the first sequence and HomY (−,G) of the second, and developing
them into a long exact sequence of Ext’s using (III, 6.4), we can use our natural
maps to get a morphism of long exact sequences:

0 −−−−→ HomX (F , f !G) −−−−→ HomX(E , f !G) −−−−→ HomX(R, f !G) −−−−→ Ext1X(F , f !G) −−−−→ Ext1X(E , f !G) −−−−→ · · ·
yφ1

yφ2

yφ3

yφ4

yφ5

y

0 −−−−→ HomY (f∗F ,G) −−−−→ HomY (f∗E ,G) −−−−→ HomY (f∗R,G) −−−−→ Ext1Y (f∗F ,G) −−−−→ Ext1Y (f∗E ,G) −−−−→ · · ·

(Note that this long exact sequence is in fact known to be infinitely long and
therefore it is impossible to fit on a page of finite extent such as this one.) Now
by (4), φ1, φ2, and φ3 are all isomorphisms. Since E is locally free of finite rank,
φ5 is also an isomorphism by what we have just done. Applying the “subtle 5-
lemma” to the part of the diagram between φ2 and φ6, we get that φ4 is injective.
Since F was an arbitrary coherent sheaf, an analogous argument shows that φ6 is
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injective. Once again applying the “subtle 5-lemma”, we deduce that φ4 is in fact
an isomorphism (as is φ6 by analogous reasoning).

We now have that φ1 to φ6 are all isomorphisms, and we can repeat the argument
just given to show that φ7 to φ9 are also isomorphisms, etc. �

Now that we have a duality theory for finite flat morphisms, we can prove the
Serre Duality Theorem for projective schemes of dimension n. In doing so, we
characterize those schemes which admit a finite flat morphism to P

n.
The following lemma will allow us to apply the theory developed thus far to

projective schemes.

Lemma 6 (Noether Normalization). Let X be an integral projective scheme of di-
mension n over a perfect field k. Then there exists a finite separable morphism
f : X → P

n.

Proof. By (I, 4.8A), K(X)/k is separably generated, so by (I, 4.7A) it contains
a separating transcendence base, yielding an injection K(Pn) = k(Y1, . . . , Yn) ↪→
K(X). By (I, 4.4), this gives a dominant morphism f : X → P

n, which is finite
and separable, since K(X)/K(Pn) is. �

Now recall the definition of a dualizing sheaf from (III, 7). If X is a proper
scheme of dimension n over a field k, a dualizing sheaf for X is a coherent sheaf ω
on X , together with a trace morphism t : Hn(X,ω) → k such that for all coherent
sheaves F on X , the natural pairing

Hom(F , ω) ×Hn(X,F) → Hn(X,ω)

followed by t gives an isomorphism

Hom(F , ω)
∼
→Hn(X,F)′.

By (III, 7.1), X = P
n
k has a dualizing sheaf ωX = OX(−n − 1). (This is easily

established using explicit calculations of the cohomology of projective space, see
(III, 5).)

Theorem 7. Let X be a projective scheme of dimension n over a perfect field k.
Then X has a dualizing sheaf.

Remark: We know from (III, 7.2) that any two dualizing sheaves are canonically
isomorphic so we will refer to “the” dualizing sheaf.

Proof. Let f : X → P
n be a finite morphism, and define

ωX := f !ωPn = HomPn(f∗OX , ωPn )̃.

Note that since ωPn is locally free, Lemma 2 applies and ωX = f !OY ⊗OX
f∗ωPn .

Now ωX , being the tensor product of two coherent sheaves, is coherent. Then we
have by (4) that

HomX (F , ωX) ∼= HomPn(f∗F , ωPn)
∼
→Hn(Pn, f∗F)′ ∼= Hn(X,F)′

where the last isomorphism comes from (III, Ex. 4.1). So HomX(F , ωX)
∼
→Hn(X,F)′,

and if we take F = ωX , then the element 1 ∈ Hom(ωX , ωX) gives a homomorphism
t : Hn(X,ωX) → k which serves as a trace map. By functoriality, (ωX , t) is a
dualizing sheaf for X . �

We’ll need the following lemma.
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Lemma 8. Let f : X → Y be a finite morphism of noetherian projective schemes
with X irreducible and Y nonsingular and irreducible. Then f is flat iff X is
Cohen-Macaulay.

Proof. [3, Exer. 18.17 (or Cor. 18.17)]. �

We can now state and prove the following theorem.

Theorem 9 (Serre duality). Let X be an irreducible projective scheme of dimen-
sion n over a perfect field k. Let ωX be the dualizing sheaf on X.

(a) For all i ≥ 0 and all F ∈ Coh(X), there are natural functorial maps

θi : Exti(F , ωX) → Hn−i(X,F)′

such that θ0 is the isomorphism given in the definition of a dualizing sheaf.
(b) Moreover, the following conditions are equivalent:

(i) there exists a finite flat morphism f : X → P
n;

(ii) every finite morphism f : X → P
n is flat;

(iii) X is Cohen-Macaulay.
(c) Finally, the above three equivalent conditions all imply:

(iv) The maps θi of (a) are isomorphisms for all i ≥ 0 and all F ∈ Coh(X).

Proof. The following commutative diagram defines θi:

Exti
X(F , ωX)

θi

−−−−→ Hn−i(X,F)′

φi

y
x∼=

Exti
Pn(f∗F , ωPn)

∼=
−−−−→ Hn−i(Pn, f∗F)′

where the φi are the maps coming from Proposition 4, and the bottom isomorphism
comes from Serre duality for P

n (III, 7.1). By Proposition 5, we know that the maps
φi being isomorphisms for all i ≥ 0 and all F ∈ Coh(X) is implied by the existence
of a flat morphism f : X → P

n. This proves (a) and (c).
(ii)⇒(i) is trivial, since Lemma 6 guarantees the existence of a finite morphism

from X to P
n. Then Lemma 8 tells us that (i)⇒(iii) and that (iii)⇒(ii). �

3. The dualizing sheaf

Now that we have established Serre duality, we will show that the dualizing sheaf
ωX := f !ωPn is in fact the canonical sheaf on a nonsingular (noetherian) projective
scheme X . Recall from (II, Example 8.20.1) that for P

n,
∧n

ΩPn is isomorphic to
OPn(−n−1) which we have already seen is the dualizing sheaf. We need a definition
and a lemma first.

Definition 10. If T is a torsion sheaf on a normal noetherian scheme X, we define
the ramification divisor of T to be

R =
∑

Z

lengthOζ
(Tζ) · Z,

where the sum ranges over all the irreducible closed subschemes Z of codimension
1 in X, and ζ denotes the generic point of Z.
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Lemma 11. Let X be a normal noetherian scheme. Suppose F and G are locally
free sheaves of rank n on X and that T is a torsion sheaf on X with ramification
divisor R, such that the sequence

0 −−−−→ F −−−−→ G −−−−→ T −−−−→ 0

is exact. Then
∧n

G ∼=
∧n

F ⊗ L(R).

Proof. We make the following definition: if M is a module of finite length
over some commutative ring A, then we denote by χA(M) the product of the
(not necessarily distinct) primes occuring in a Jordan-Hölder series for M. (For
noetherian integrally closed domains, this χA is the canonical map from the category
of finite length A-modules to its Grothendieck group, which is the group of ideals
of A. See [7, I §5] for details.) Also note that since X is normal, it makes sense to
talk about Weil divisors on X .

We now begin the proof of the lemma. Taking nth exterior powers, we get an
exact sequence

0 −−−−→
∧n

F
det

−−−−→
∧n

G −−−−→ C −−−−→ 0.

Since
∧n

G is locally free of rank 1, we can tensor by its dual to get an exact sequence

0 −−−−→
∧n

F ⊗ (
∧n

G)
−1

−−−−→ OX −−−−→ C ⊗ (
∧n

G)
−1

−−−−→ 0.

But then
∧n

F⊗ (
∧n

G)
−1

equals (as subsheaves of OX) ID, the ideal sheaf of some
locally principal closed subscheme of X corresponding to an (effective) Cartier
divisor D, and hence C ∼= (

∧n
G) ⊗OD.

If we let C(X) be the group of Cartier divisors on X , then there is an injection
C(X) ↪→ Div(X), where Div(X) is the group of Weil divisors. We claim thatD = R
as Weil divisors. It suffices to show that nZ = n′

Z for each prime divisor Z of X ,
where nZ denotes the coefficient of Z in R, and n′

Z denotes the coefficient of Z in
D. Fix one such Z, and denote by ζ its generic point. Then the local ring Oζ is a
discrete valuation ring, and we have the following exact sequences of Oζ-modules:

0 −−−−→ Fζ
u

−−−−→ Gζ −−−−→ Tζ −−−−→ 0

and

0 −−−−→
∧n

Fζ
det u

−−−−→
∧n

Gζ −−−−→ Cζ −−−−→ 0.

By the theory of modules over a principal ideal domain, we have

nZ = lengthOζ
Tζ = lengthOζ

(cokeru) = vZ

(
χOζ

(cokeru)
)
,

where vZ denotes the valuation on the local ring Oζ . By [7, I, §5, Lemma 3], we
have χOζ

(cokeru) = β · Oζ , where β · Oζ is the image of detu. So nZ = vZ(β) =
lengthOζ

(OD)ζ = n′
Z as claimed. This shows that D = R as Weil divisors, and

hence as Cartier divisors; in particular, R is a well-defined Cartier divisor! We
conclude that

L(−R) ∼= ID
∼=

n∧
F ⊗

(
n∧
G

)−1

,

so
∧n

G ∼=
∧n

F ⊗ L(R). �

Remark: Using the terminology of (II, Ex. 6.11(b)), we have proved that the
determinant det T of our sheaf T is isomorphic to L(R).

We now want to prove the following:
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Theorem 12. Let f : X → Y be a finite separable morphism of degree d between
integral nonsingular schemes of dimension n. Then

Ωn
X

∼= f !Ωn
Y .

Proof. What we will end up doing is proving in a slightly roundabout way that

Ωn
X

∼= f∗Ωn
Y ⊗L(R)(9)

and

f !Ωn
Y
∼= f∗Ωn

Y ⊗L(R)(10)

for the same “ramification divisor” R.
Let us first try to prove (9). By (II, 8.11), we have an exact sequence

f∗ΩY → ΩX → ΩX/Y → 0.

Now ΩX is locally free of rank n on X , and ΩY is locally free of rank n on Y , so
f∗ΩY is locally free of rank n on X (since f∗OY = OX ). As f is a finite separable
morphism, K(X)/K(Y ) is a finite separable extension so by [6, Thm. 25.3], we get
ΩK(X)/K(Y ) = 0. Hence ΩX/Y is a torsion sheaf. Now letting K be the kernel of
f∗ΩY → ΩX , we get an exact sequence at each point P of X

0 → KP → On
P → On

P → (ΩX/Y )P → 0.

Tensoring this sequence with K(X), which is flat over OP , we get

dimK(X) KP ⊗K(X) = −n+ n+ dimK(X)(ΩX/Y )P ⊗K(X) = 0,

so KP is torsion. But KP ⊆ On
P , and OP is an integral domain, so we have K = 0,

i.e.

0 → f∗ΩY → ΩX → ΩX/Y → 0.

Now taking the ramification divisor R associated to ΩX/Y , we have

Ωn
X

∼= f∗Ωn
Y ⊗L(R)

by Lemma 11, proving (9). (10) will be proved as Lemma 15. �

In order to prove Lemma 15, some further preparation is needed. Let f : X → Y
again be a finite separable morphism between nonsingular irreducible schemes X
and Y . Then X is in particular Cohen-Macaulay, so f∗OX is a locally free OY -
module (and also is an OY -algebra via f#).

We want to define an OY -linear “trace” map Tr : f∗OX → OY as follows. On
any sufficiently small affine open U = SpecA ∈ Y , we have f−1U = SpecB affine,
and B is a free A-module of rank d = deg f . Let {e1, . . . , ed} be a basis for B
over A, and for b ∈ B write bei =

∑
aijej . Then we can set Tr(b) :=

∑
aii on

B, which is independent of the chosen basis, so the local maps defined in this way
glue properly to give a global map of sheaves on X . (For further discussion see [2,
Chapter VI, Remark 6.5].)

By (4), the map Tr ∈ HomY (f∗OX ,OY ) gives rise to a map Tr ∈ HomX(OX , f
!OY ).

We will be interested in the cokernel F of the morphism Tr. We first collect some
facts about Dedekind rings and then prove a proposition characterizing the sheaf
F .

Lemma 13. Let A and B be Dedekind domains with fraction fields K and L,
respectively. Suppose that L is finite separable over K, with B the integral closure
of A in L. Then
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(a) B ⊗A K = L

(b) HomA(B,A) ↪→ HomK(L,K)

(c) If I, J are fractional ideals of B, I/IJ ∼= B/J .

(d) If M is a torsion B-module, then M may be written uniquely in the form
M = B/I1⊕· · ·⊕B/Im, where I1 ⊆ · · · ⊆ Im is an ascending sequence of nontrivial
ideals of B.

Proof. (a) Both L and B ⊗A K can be characterized as the integral closure
of K in L; (b) follows from (a); (c) is an exercise for the reader; (d) see [3, Ex.
19.6(c)]. �

Proposition 14. Tr is injective, and its cokernel F is a torsion sheaf. Moreover,
the ramification divisor of F is equal to the ramification divisor of ΩX/Y .

Proof. We begin with a sequence of reductions. Since the statement of the
lemma is of local nature and f is a finite morphism, we can assume that Y = SpecA
and X = SpecB. In fact, it suffices to prove the proposition after localizing at a
height 1 prime of A; we may thus assume that (A,m) is a discrete valuation ring
and B is a semilocal ring with maximal ideals {p1, . . . , pr} dominating m. As f
is surjective (and hence dominant), f# : A → B is injective, so we may assume
without loss of generality that A ⊆ B.

We now have f !OY = HomA(B,A)̃, and by the equivalence of categories between
B-modules and quasicoherent sheaves on SpecB, we find that the exact sequence

OX
Tr

−−−−→ f !OY −−−−→ F −−−−→ 0(11)

corresponds to an exact sequence of B-modules

B
Tr

−−−−→ B∗ −−−−→ M −−−−→ 0,(12)

where B∗ = HomA(B,A).
The image of 1 ∈ B under Tr is easily seen to be Tr ∈ B∗. If we let K and L

denote the fields of fractions of A and B respectively, then L/K is separable (since
f is), so Tr 6= 0 ∈ B∗ by [7, III, §3]. This shows that Tr is injective.

Let K and L be the fraction fields of A and B, respectively. Note that K = K(Y )
and L = K(X). By assumption A is Dedekind, and since B is finite over A it is
integral over A. But X is nonsingular, hence normal, so B is integrally closed and
thus is the integral closure of A in L. By (I, 6.3A) B is also a Dedekind ring, so
applying Lemma 13 it follows that B ⊗A K = L, and that we have an injection
B∗ = HomA(B,A) ↪→ HomK(L,K). But HomK(L,K) can be canonically identified
with L via

L
∼
→ HomK(L,K)

x 7→ (l 7→ TrL/K(xl)).

Under this identification, B∗ corresponds to

B† = {x ∈ L : TrL/K(xB) ⊆ A} ⊆ L.

Here B† is a fractional ideal of B containing B; its inverse, the different DB/A, is
an integral ideal of B [7, III, §3]. By Lemma 13(c), we have

B†/B ∼= B/DB/A.
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Note also that since B is a Dedekind ring, B∗ is locally free of rank 1 as a B-module.
Hence f !OY is a locally free sheaf of rank 1, and we in fact see that F is a torsion
sheaf in (11):

0 −−−−→ OX −−−−→ f !OY −−−−→ F −−−−→ 0.(13)

We now claim that lengthOζ
(ΩX/Y )

ζ
= lengthOζ

Fζ for all ζ corresponding to

generic points of prime divisors Z on X . So we have to show that

lengthBp
Mp = lengthBp

(ΩB/A)
p

(14)

for height 1 primes p ⊆ B, i.e. p1, . . . pr. But this follows from [8, Theorem 4.1(1)].
(Note that since L/K is separable, ΩB/A⊗BL = ΩL/K = 0, hence ΩB/A is a torsion
B-module.) �

Remark: By Lemma 13(d), we must have

ΩB/A =
t⊕

1

B/Ii

for some ideals Ii in B. Then we can see from [8] that DB/A can be expressed as

DB/A =
t∏

1

Ii.

Remark: Note that if we knew that all k(ζ)/k(η) were separable (where η ∈ Y
corresponds to m ∈ SpecA), then we could apply [7, III, §7 Prop. 14] to obtain this
result. The reader may find it amusing to try to come up with an example where
the results of [7] are not sufficient.

We have all the components in place now for the proof of (10):

Lemma 15. Letting R be the ramification divisor of F (or ΩX/Y ),

f !Ωn
Y
∼= f∗Ωn

Y ⊗L(R).

Proof. Using the short exact sequence (13) we obtain, by Lemma 11,

f !OY
∼= L(R).

Tensoring this isomorphism on both sides by the sheaf f ∗Ωn
Y , we see that

f !OY ⊗OX
f∗Ωn

Y
∼= f∗Ωn

Y ⊗L(R).

But since Ωn
Y is locally free, by Lemma 2 we get

f !Ωn
Y
∼= f∗Ωn

Y ⊗L(R).

�

This establishes (10), so the proof of Theorem 12 is now complete.

Corollary 16. Let X be a nonsingular projective variety of dimension n over k.
Then ωX

∼= Ωn
X .

Proof. Let f : X → P
n be a finite separable morphism whose existence is

guaranteed by Lemma 6. Then ωX
∼= f !ωPn by the proof of Theorem 7. But

ωPn ∼= Ωn
Pn . The result now follows from Theorem 12. �
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cations Mathématiques 8, I.H.E.S., 1961

[5] Robin Hartshorne: Algebraic Geometry, Graduate Texts in Mathematics 52, Springer-Verlag,
1977

[6] Hideyuki Matsumura: Commutative Ring Theory, Cambridge studies in advanced mathemat-
ics 8, Cambridge University Press, 1986

[7] Jean-Pierre Serre: Local Fields, Graduate Texts in Mathematics 67, Springer-Verlag, 1979
[8] Bart de Smit: The different and differentials of local fields with imperfect residue fields, to

appear in Edinburgh Math. Soc.

E-mail address: baker@math.berkeley.edu

E-mail address: janos@math.berkeley.edu

Department of Mathematics, University of California, Berkeley, CA 94720-3840


