
AN EXPOSITION OF THE SEA ALGORITHM

JÁNOS A. CSIRIK

Abstract. The Schoof–Elkies–Atkin algorithm is an efficient way to count
the number of points on an elliptic curve defined over a large prime field.
This expository paper describes the algorithm in sufficient detail to allow a
reader not familiar with arithmetic geometry to implement the algorithm. The
mathematical background for the technique is then given.

1. Introduction

Let p be a large (odd) prime and let

E : y2 = x3 + a4x + a6

be an elliptic curve, where a4 and a6 are given fixed integers. In the case where p
does not divide 4a3

4+27a2
6, E can be reduced to an elliptic curve over Fp. The num-

ber of points of E over Fp, denoted by #E(Fp), is of cryptographic interest, since
the properties of this number determine the security of elliptic curve cryptosystems
based on E against various known attacks.

The first polynomial time algorithm for determining the number of rational
points on an elliptic curve defined over a finite field is due to Schoof. He used
calculations with torsion points on the curve to arrive at the number of points.
At first Schoof’s algorithm was considered impractical, but Elkies suggested the
use of “good” primes (now known as Elkies primes), where isogenies and modular
curves can be involved to speed up the calculation. Atkin also made a number
of important contributions to the algorithm, which then became known as the
Schoof–Elkies–Atkin (SEA) algorithm. Further improvements were later proposed
by Dewaghe and Couveignes–Dewaghe–Morain. The SEA algorithm was imple-
mented by Morain, Müller, and Izu et al.

Schoof’s seminal paper [18] describes the original algorithm. He later also pub-
lished a paper [19] that is a lovely overview of the developments in the subject up to
1995. Elkies’ paper [9] describes the ideas of his original manuscript [8] and contains
many other theoretical insights and illuminating examples. The implementations
of Morain and Müller are described in [15] and [16]. The implementation of Izu,
Kogure, Noro and Yokoyama, which focuses on speeding up the algorithm as much
as possible, is described in [13]. Dewaghe’s improvement is published in [7], see also
Section 3.13. The improvement by Couveignes–Dewaghe–Morain is published in [5],
see also Section 4.3. Atkin never formally published his contributions described in
[1], but they are discussed extensively in [9, 19].

This paper, which is not aimed at the experts in the area, describes in detail a
reasonably fast implementation of the SEA algorithm that is closely modeled upon
Morain’s. The algorithm considered below is probabilistic and, for a 200-bit prime
p, succeeds with a probability of about 3/4 (which can be brought arbitrarily close
to 1 by enlarging the set A of auxiliary primes below). The algorithm implemented

1

2 JÁNOS A. CSIRIK

on a typical personal computer takes several minutes to find the number of points
on a typical curve over Fp, where p has 200 bits.

It is known that

#E(Fp) = p + 1− t,

where t is an integer which satisfies the Hasse bound

−2
√

p ≤ t ≤ 2
√

p.

The algorithm works by calculating t modulo several small auxiliary primes `. When
the product of the auxiliary primes exceeds 4

√
p, the Chinese Remainder Theorem

is used to recover the exact value of t, and hence that of #E(Fp).
The algorithm works its way though a fixed list of 40 candidates for auxiliary

primes given below. For each candidate `, a calculation has to be carried out to
generate a certain polynomial Ψ` that is necessary for further calculations with
this `. These polynomials Ψ` do not depend on the curve E under consideration
and hence might be precomputed and stored if memory allows. Then for any
elliptic curve E we can quickly decide if our algorithm applies (the probability that
the algorithm applies for a specific E and ` is 1/2). For those curves where the
algorithm applies, we can determine t modulo `.

When we finished with all our candidates for the auxiliary primes, we can look
at the elliptic curve and check whether the product of auxiliary primes that worked
exceeds 4

√
p or not. In the former case, we succeeded in determining t.

A typical application for this point counting would be to take a random prime
p and a random elliptic curve E over Fp, with the intention of finding an E with
#E(Fp) = xr, where r is a prime and x is small. Given such a curve, a point P
of order r can be located easily and the pair (E, P) could be used for a number of
cryptographic algorithms, such as Diffie-Hellman key exchange, El Gamal encryp-
tion, etc. If we use 200-bit primes for p and require x ≤ 32, then the probability
that #E = xr is about 2.5%, so we expect to have to run our algorithm on about
55 curves.1

Section 2 describes the algorithm in detail. Section 3 presents the mathematical
background of the algorithm. Section 4 presents ideas by which the algorithm could
be improved. Section 5 contains certain tables of data that need to be hardwired
into a program implementing this algorithm.

2. The Algorithm

2.1. Overview. The set A of potential auxiliary primes is the union of the set As of
small primes and the set Al of larger primes. For each ` ∈ A, we need to determine a
polynomial Ψ`(F, J) ∈ Z[F, J]. For ` ∈ As, this is stored in the program. For ` ∈ Al,
Ψ` must be calculated by determining a number of coefficients of a certain q-series
f(q) ∈ Z[[q]] and carrying out certain algebraic operations on it. The polynomials
Ψ` do not depend on the elliptic curve under consideration and therefore may be
pre-calculated and stored if there is enough space for them (they require just under
a half megabyte to store).

We start out with a given prime p and an elliptic curve

E : y2 = x3 + a4x + a6.

1The chance that a randomly selected integer of similar size is of the form xr as above is about
3%. For more details, see [12, 10]

AN EXPOSITION OF THE SEA ALGORITHM 3

We need to check a few simple things and calculate the j-invariant j = j(E) =
6912a3

4/(4a3
4 + 27a2

6) ∈ Fp.
Working over Fp, we plug in J = j ∈ Fp into Ψ`(F, J) and find all roots f ∈ Fp

that satisfy

Ψ`(f, j) = 0.

For each of these f , we need to find all ̃ such that

Ψ`(f, ̃) = 0.

For all possible pairs (f, ̃), we do various operations involving Ψ` and its partial
derivatives to obtain the quantities ã4, ã6, p1. For any quintuplet (a4, a6, ã4, ã6, p1),
we can determine whether it is “valid”, and if so, we can generate a “kernel poly-
nomial” h(X) ∈ Fp[X] of degree d = (` − 1)/2. Given a kernel polynomial h(X),
we can determine the “eigenvalue” e ∈ Fp and conclude that t ≡ e + p/e (mod `).

An application of the Chinese Remainder Theorem completes the calculation.
The remaining subsections of Section 2 explain the details of the steps described

above.

2.2. Determination of Ψ` for ` ∈ As. Set As = {3, 5, 7, 11, 13, 17, 19, 23}. For
` ∈ As, the polynomial Ψ` is to be found in the table of Section 5.3.

2.3. Determination of f for ` ∈ Al. Let Al be the set of prime numbers from
29 through 197, except for 37, 43, 67 and 163. We need to calculate using q-series
(power series in the variable q, possibly with a finite number of negative powers
of q). Let σk(n) denote the sum of kth powers of the positive divisors of n. The
following q-series will be needed.

E4(q) = 1 + 240

∞∑

n=1

σ3(n)qn = 1 + 240q + 2160q2 + 6720q3 + · · ·

E6(q) = 1− 504

∞∑

n=1

σ5(n)qn = 1− 504q − 16632q2 − 122976q3 − · · ·

j(q) = 1728E4(q)
3/(E4(q)

3 −E6(q)
2) = q−1 + 744 + 196884q + 21493760q2 + · · ·

η̄(q) =

∞∏

n=1

(1− qn) =

∞∑

k=−∞

(−1)kq(3k2+k)/2 = 1− q − q2 + q5 + · · ·

For each `, we need to look up the suitable polynomial P` from the table in
Section 5.1. Let v denote the degree of P`. Calculate the coefficients ak ∈ F` such
that

P`(j(q))η̄(q)η̄(q`) ≡
2`v−v∑

k=−v

akqk + O(q2`v−v+1) (mod `).

(This can be done by multiplying out the product on the left hand side modulo `
and reading off the coefficients.) For each ak, let bk be the least absolute remainder
of ak mod ` (the integer with the smallest possible absolute value that reduces to
ak modulo `). Now the f we are searching for is the q-series

(
2`v−v∑

k=−v

bkqk + O(q2`v−v+1)

)
/(η̄(q)η̄(q`)).

This will enable us to determine the coefficients of qk in f(q) for all k ≤ 2v`− v.

4 JÁNOS A. CSIRIK

2.4. Determination of Ψ` for ` ∈ Al. This calculation involves manipulation of
q-series. To simplify notation, we write all q-series as though all the coefficients were
known, but in fact we need to calculate only as many coefficients as our knowledge
of f from the previous step will allow. The previous step calculated just enough
coefficients in f for this step to work correctly (see Section 3.14 for details).

For the calculation that follows, we shall need the q-expansions of f, f 2, . . . , f `.
Let

(f(q))k =
∑

n

a(n, k)qn.

For each 1 ≤ k ≤ `, let

sk(q) =
∑

n

`a(`n, k)qn.

For each 1 ≤ k ≤ `, let

ck(q) = −
(

sk(q) +
k−1∑

r=1

ck−r(q)sr(q)

)
/k.

Finally, let C1(q) = −f + c1(q), C`+1(q) = −fc`(q) and for each 2 ≤ k ≤ `,

Ck(q) = −fck−1(q) + ck(q).

It turns out that for each 1 ≤ k ≤ ` + 1, there is a polynomial Gk such that

Gk(j(q)) ≡ Ck(q) (mod p).

Since the q-expansion of j starts with q−1 + · · · , the coefficients of Gk are easy to
determine. Indeed, let d be the order of the pole of Ck at q = 0, so that Ck(q) =
aq−d+ · · · , where a is some non-zero constant. Then Ck(q) = aj(q)d +C ′

k(q), where
C ′

k(q) = Ck(q) − aj(q)d is a polynomial in j(q), with a pole of order strictly less
than d. Iterating this procedure, we obtain all the coefficients of Gk .

Once we determined all the Gk, we can write down Ψ` as

Ψ`(F, J) = F `+1 +
∑̀

i=1

Gi(J)F `+1−i.

2.5. Initialization. The prime p is intended to be large: indeed, we need to check
that ` < p for all ` ∈ A for the algorithm to work at all.

We also need to confirm that p does not divide 4a3
4 + 27a2

6, otherwise E is not
an elliptic curve when reduced modulo p.

Finally, calculate and store the j-invariant j = j(E) = 6912a3
4/(4a3

4+27a2
6) ∈ Fp.

We discard E if its j-invariant equals 0 or 1728. This condition would only be
satisfied for a very small number of curves. Also later in the calculation, we shall
abandon the branch of the calculation where an elliptic curve with j-invariant 0 or
1728 arises.

We also discard E if it is supersingular. Supersingular curves are the ones for
which #E(Fp) = p+1. We can check E for supersingularity by taking a few random
points on it and checking if p+1 annihilates them. If not, then the curve is definitely
not supersingular and we can go on. If yes, then E is probably supersingular so we
throw it away. Once again, we only throw away a few E this way. Furthermore,
this check needs to be carried out only for our original E and not for any other
curves that arise during the calculations later on.

AN EXPOSITION OF THE SEA ALGORITHM 5

2.6. Determination of the Possible Pairs (f, ̃). Since we are working with a
single ` here, let us denote Ψ` by Ψ. Let Ψ1 denote the first partial derivative of
Ψ, let Ψ12 denote the second partial derivative of Ψ1, and so on.

If we plug in J = j into Ψ(F, J), we obtain a univariate polynomial Ψ(F, j) in
the variable F . The roots f ∈ Fp of this polynomial are our candiates for f . If
Ψ1 or Ψ2 vanishes at (f, j), then that f must be discarded from our list. This will
happen very rarely but must be caught to avoid a division by zero later on.2

For each one of our remaining candidates f ∈ Fp, we should find all the roots
̃ ∈ Fp of the polynomial Ψ(f, J). These are our candidates for ̃ with the given f .
If Ψ1 or Ψ2 vanishes at (f, ̃), then this pair (f, ̃) must be dropped from our list.
This will happen very rarely but must be caught to avoid a division by zero later
on.

Also discard all the pairs (f, ̃) where ̃ = 0 or ̃ = 1728.

2.7. Determination of ã4, ã6, p1, Given (f, ̃). We need to calculate the follow-
ing quantities, which are elements of Fp. Let E4 = −48a4, E6 = 864a6 and

f ′ =
E6

E4
j
Ψ2(f, j)

Ψ1(f, j)
, Q =

f ′

̃

1

`

Ψ1(f, ̃)

Ψ2(f, ̃)
, Ẽ4 =

̃

̃− 1728
Q2.

Let Ẽ6 = Ẽ4Q and

t1 =
1

Ψ1(f, j)

(
−f ′Ψ11(f, j) + 2jΨ12(f, j)

E6

E4
− E2

6

f ′E2
4

(jΨ2(f, j) + j2Ψ22(f, j))

)
,

t2 =
1

Ψ1(f, ̃)

(
−f ′Ψ11(f, ̃) + 2`̃Ψ12(f, ̃)

Ẽ6

Ẽ4

− `2 Ẽ2
6

f ′Ẽ2
4

(̃Ψ2(f, ̃) + ̃2Ψ22(f, ̃))

)
.

Let

t3 =
E6

3E4
− E2

4

2E6
, t4 = `(

Ẽ6

3Ẽ4

− Ẽ2
4

2Ẽ6

).

Finally, let p1 = `(t2 + t4 − t1 − t3)/4, ã4 = −`4Ẽ4/48 and ã6 = `6Ẽ6/864.
All of the intermediate results, except for ã4, ã6 and p1, can be discarded before

moving on.

2.8. Determination of the Kernel Polynomial h(X) given ã4, ã6 and p1.

Recall our notation d = (` − 1)/2. Here we are aiming to produce a polynomial
h(X) of degree d. We need to pick an integer S, which is a small positive integer
determining the number of “extra” terms we carry for a certain calculation. These
extra terms will have to vanish at the end to assure us that the triple (ã4, ã6, p1)
we started with is “valid”. The choice S = 3 works fine.

First we set

p0 = d,

p2 = ((1− 10d)a4 − ã4)/30,

p3 = ((1− 28d)a6 − 42p1a4 − ã6)/70.

2If one, but not both, of Ψ1 and Ψ2 vanishes at (f, j) then our formulae can be rewritten to
make sense and avoid division by zero. However, even writing this footnote seems like excessive
effort in the face of an eventuality this unlikely.

6 JÁNOS A. CSIRIK

Recall that p1 was already given as part of our data. Then set

c1 = 6p2 + 2a4d,

c2 = 10p3 + 6a4p1 + 4a6d,

and for each 2 ≤ r ≤ d− 1 + S, let

cr+1 =
3
∑r−1

n=1 cncr−n − (2r − 1)(r − 1)a4cr−1 − (2r − 2)(r − 2)a6cr−2

(r − 1)(2r + 5)
.

Next, for each 3 ≤ n ≤ d− 1 + S, let

pn+1 =
1

4n + 2
(cn − (4n− 2)a4pn−1 − (4n− 4)a6pn−2) .

The quantity pi is the sum of the ith powers of the roots of h(X). From here, we
can obtain the coefficients in the usual manner (see [4, Prop. 4.3.3.]). Specifically,
set s0 = 1, and for all 1 ≤ i ≤ d + S, let

si =
−1

i

i∑

k=1

(−1)kpksi−k.

We need to check if sd+1 = sd+2 = · · · = sd+S = 0. If not, we conclude that our
triplet (ã4, ã6, p1) was not valid, and we go on to the next (f, ̃) pair.

If our triplet was deemed to be valid, then

h(X) =

d∑

i=0

(−1)isiX
d−i.

If the triplet (ã4, ã6, p1) is not valid, then we can go on to the next pair (f, ̃)
to get our next triplet (ã4, ã6, p1), and so on. If no valid triplet (ã4, ã6, p1) can be
found, then the algorithm does not apply to the elliptic curve under consideration
and this `, so we find out nothing about t modulo `.

2.9. Determination of the Eigenvalue e Given the Kernel Polynomial

h(X). First of all, factor h(X) and replace it by any one of its (non-trivial) factors.
From now on, h(X) will denote the factor that we chose. Note that in this step, the
algorithm can be speeded up appreciably by rearranging the order in which some
steps are carried out. For details, see Section 4.1.

Use the table in Section 5.2 to pick an integer s based on the value of `. For any
`, we get an s ≤ 11. Given this s, we need four polynomials, as(X), bs(X), cs(X)
and ds(X). The way to obtain these is explained in Section 2.10.

The procedure we need to follow here is slightly different for the cases where the
degree of h is even or odd. Let us assume for now that deg(h) is even.

Start by calculating and storing Q1(X) = Xp mod h(X) and Q2(X) = (X3 +
a4X + a6)

(p−1)/2 mod h(X).
Throughout this calculation, we need to maintain a pair of polynomials (P1(X), P2(X))

and an integer e. Initially, (P1(X), P2(X)) = (X mod h(X), 1) and e = 1.
If at some stage (P1(X), P2(X)) = (Q1(X),±Q2(X)) then we may stop. If

P2(X) = Q2(X) then the current value of e is the eigenvalue we are aiming to
calculate. If P2(X) = −Q2(X) then the eigenvalue is −e.

AN EXPOSITION OF THE SEA ALGORITHM 7

Otherwise, do the following replacements simultaneously (in other words, the
values of P1 and P2 to be used on the right hand side are the old ones):

P1(X) ← as(P1(X))

bs(P1(X))
mod h(X),

P2(X) ← P2(X)
cs(P1(X))

ds(P1(X))
mod h(X),

e ← es mod `

Iterate this until the condition (P1(X), P2(X)) = (Q1(X),±Q2(X)) is satisfied.
This should occur after no more than (`− 1)/2 steps.

In the case where deg(h) is odd, the calculation is the same except that we do
not have to calculate Q2 or P2. Whenever P1(X) = Q1(X) is achieved, the correct
value of the eigenvalue is

es(e)
(r

`

)
e,

where r is the resultant of h(X) and w(X) = X3 + a4X + a6, and s(x) is the
semi-order of x modulo `, i.e., the smallest positive n such that xn ≡ ±1 (mod `).

2.10. Determination of the Polynomials as(X), bs(X), cs(X) and ds(X).
The polynomials we will obtain depend on E, but not on `. Since they are of
relatively low degree, it is probably a good idea to calculate and store them once
for each E and just look up the right ones for each `.

Choose an integer R such that we need to calculate the polynomials as(X),
bs(X), cs(X) and ds(X) for s ≤ R. For example, R = 11 will do with the set of
` that are used in this algorithm. (But R = 5 will suffice with the modification
described in Section 4.2.)

We need to calculate a number of polynomials with coefficients in Fp.

w(X) = X3 + a4X + a6,

f1(X) = 1,

f2(X) = 2,

f3(X) = 3X4 + 6a4X
2 + 12a6X − a2

4,

f4(X) = 4X6 + 20a4X
4 + 80a6X

3 − 20a2
4X

2 − 16a4a6X − 4a3
4 − 32a2

6.

We can now determine the desired polynomials for s = 2 as

a2(X) = 4Xw(X)− f3(X),

b2(X) = 4w(X),

c2(X) = f4(X)/4,

d2(X) = 8w(X)2.

For each 5 ≤ n ≤ R + 2, we need to calculate the polynomial fn(X). If n = 2m,
let

fn = fm(fm+2f
2
m−1 − fm−2f

2
m+1)/2.

If n = 2m + 1 with m even, let

fn = w2fm+2f
3
m − fm−1f

3
m+1.

If n = 2m + 1 with m odd, let

fn = fm+2f
3
m − w2fm−1f

3
m+1.

8 JÁNOS A. CSIRIK

Now for any odd3 s in the range 2 < s ≤ R, we can write down

as(X) = Xfs(X)2 − w(X)fs−1(X)fs+1(X),

bs(X) = fs(X)2,

cs(X) = fs+2(X)fs−1(X)2 − fs−2(X)fs+1(X)2,

ds(X) = 4fs(X)3.

2.11. The Last Step. For each elliptic curve E we end up knowing the important
integer t modulo various small primes `. Since the absolute value of t is bounded
by 2
√

p, we can use the Chinese Remainder Theorem to deduce t once the product
of the moduli exceeds 4

√
p.

For any specific curve E, once we have narrowed down the possibilities for t to
a manageable number, we can use another method to arrive at the correct value of
t faster. For details, consult Section 4.5.

3. Mathematical Background

3.1. A Few Unusual Curves. The theory is a lot cleaner if we assume that
for any elliptic curve E that occurs later, j(E) is not 0 or 1728, and E is not
supersingular (recall that this means #E(Fp) = p + 1). The first condition assures
that E does not have too many automorphisms, the second one assures that the
endomorphism ring of E has rank 2 over Z (as opposed to rank 4 for supersingular
curves).

Since each point on a supersingular curve is annihilated by p + 1 in the group
law, whereas most points on most non-supersingular curves are not annihilated by
p + 1, supersingularity can be effectively checked by multiplying a few points on
the curve by p + 1. For details, see Section 2.5.

The curves just mentioned are in fact known to have a discrete logarithm problem
that is easier than usual to solve, and hence their exclusion only does good to our
intended applications in cryptography.

3.2. Reducing Point-Counting to Considering Isogenies. The idea of the
algorithm is that since our elliptic curve E is defined over Fp, the Frobenius map
F : (x, y) 7→ (xp, yp) acts on it. In fact, it satisfies

F 2 − tF + p = 0.

The same relation is also valid for the action of F on the set of `-torsion points
of E, denoted by E[`]. We could therefore obtain t′ = t mod ` by checking which
0 ≤ t′ ≤ `− 1 satisfies (F 2 + p)Q = t′FQ for all Q ∈ E[l]. This is the original idea
of Schoof’s algorithm in [18].

Carrying out this plan quickly leads to arithmetic with polynomials of degree
(`2−1)/2 over Fp. Therefore, in practice it is better to use an idea of Elkies, which
works only for half the primes `, but then only requires the use of polynomials of
degree (`− 1)/2 over Fp.

The method works if t2− 4p is a square modulo `. This condition is satisfied for
(asymptotically) half of all prime numbers `. In this case, the action of F on E[`]
splits into (usually) two eigenspaces. If we somehow knew a subgroup B of E[`]

3Similar formulae exist for even s > 2, but those will not be needed in this algorithm.

AN EXPOSITION OF THE SEA ALGORITHM 9

where F acts as a scalar, then we could check which 0 ≤ e ≤ `− 1 has the property
that

eQ = FQ

for all Q ∈ B. Then we could use the congruence t′ ≡ e + p/e (mod `) to get t′.
Such a subgroup B can be described by a degree (` − 1)/2 polynomial h(X) that
vanishes exactly at the x coordinates of points in B. Indeed, given h(X) what we
need to check is whether

e(X, Y) ≡ (Xp, Y p) (mod h(X), Y 2 −X3 − a4X − a6).

(Here the left hand side means (X, Y) ⊕ · · · ⊕ (X, Y) (e times), where ⊕ denotes
addition according to the group law of E.)

Any subgroup B of size ` in E determines a degree ` isogeny (to be referred as
an `-isogeny) E → E/B. The group B being (in) an eigenspace of F is equivalent
to this isogeny being defined over Fp. So we have reduced our problem to finding
an explicitly described `-isogeny E → E1 defined over Fp, if such a thing exists.
(This happens exactly if t2 − 4p is a square modulo `, but we do not know t2 − 4p
yet!)

3.3. Parametrizing `-isogenies. Let us think about `-isogenies of elliptic curves
defined over C first. Section 3.10 shall indicate how these considerations can be
made to apply to elliptic curves defined over Fp.

Any elliptic curve E over C can be regarded as a quotient of C by a rank 2
lattice L. Multiplying all elements of the lattice by a complex constant does not
change the isomorphism class of the curve, so we may assume that the lattice L is
spanned by 1 and τ ∈ C, with τ in the upper half plane. Hence

E ∼= C/(Z⊕ τZ).

However, for our purposes it is useful to choose another uniformization of E, that
obtained via the map z 7→ exp(2πiz). It is clear that this gives an isomorphism

E ∼= C
∗/qZ,

where q = exp(2πiz) and qZ = {qn : n ∈ Z}. Any compact Riemann surface (such
as C∗/qZ) is a projective algebraic variety (c.f. [11, B, Theorem 3.1]), and it turns
out that C∗/qZ is (isomorphic to) the elliptic curve

E : Y 2 = X3 − E4(q)

48
+

E6(q)

864
,

where E4(q) and E6(q) are the q-series mentioned in Section 2.3. This E is in fact
`-isogenous to E1 = C∗/q`Z, via the map z 7→ z`. We can once again use q-series
to describe the equation of E1: indeed,

E1 : Y 2 = X3 − E4(q
`)

48
+

E6(q
`)

864
.

We also need the kernel polynomial h(X), which vanishes exactly at the x coor-
dinates of points in the kernel of our isogeny (these points are just the images of
the `th roots of 1 in C∗/qZ). In fact, as explained in Section 3.9, it suffices to
calculate here the first coefficient p1 of h(X), because the rest of the coefficients
can be obtained from p1 and the data we already have. As for p1, it turns out that

p1 =
`

24

(
E2(q)− `E2(q

`)
)
,

10 JÁNOS A. CSIRIK

where

E2(q) = 1− 24

∞∑

n=1

σ1(n)qn = 1− 24q − 72q2 − 96q3 − · · ·

Hence, if we are given an elliptic curve

E : Y 2 = X3 + a4X + a6,

we can find `-isogenies by locating various q such that E ∼= C∗/qZ. For each such
q, we can find the equation of E1

∼= C∗/q`Z as well as the kernel of the isogeny.

3.4. Locating the Parameters that Belong to a Certain Isogeny. The
method suggested in Section 3.3 is impractical in the sense that infinitely many
different choices of q give the same elliptic curve C∗/qZ (up to isomorphism). Two
elliptic curves are isomorphic if and only if they have the same j-invariant. The j-
invariant of C∗/qZ turns out to be the q-series j(q) = 1728E4(q)

3/(E4(q)
3−E6(q)

2)
(the same j(q) that occurs in Section 2.3). Any complex number can occur as the
j-invariant of an elliptic curve, and the q-series j(q) can actually take any value
as we vary q. Therefore, we could just pick a q for each possible j-invariant and
restrict our attention to just those q, since all other ones would just clutter our
calculations without yielding new elliptic curves.

In fact, we can do a little better. Instead of restricting attention to those q that
give us all the isomorphism classes of elliptic curves E as C∗/qZ, we take a bigger set
of q so that the corresponding `-isogenies C∗/qZ → C∗/q`Z give us all isomorphism
classes of `-isogenies E → E1. It turns out this set can be given the structure of
an algebraic curve called Y0(`). The addition of two extra points (called the cusps)
compactifies the curve, and we obtain a smooth projective curve X0(`). The curve
X0(`) is a modular curve, so called since its points are moduli (parameters) for
`-isogenies of elliptic curves.

The fact that X0(`) has geometric structure is a powerful tool. For example, the
q-series j(q) is just a (rational) function on X0(`), for each point giving us the j-
invariant of the “source” curve of the isogeny parametrized by that point. Similarly,
j(ql) is a rational function on X0(`) that gives the the j invariant of the target.
Also, given an `-isogeny φ : E → E1, we can take the dual isogeny φ∨ : E1 → E.
This operation is reflected on X0(`) by a morphism w : X0(`) → X0(`). If Q is
the point that parametrizes φ, then wQ parametrizes φ∨. Since (φ∨)∨ = φ, we
conclude that the morphism w ◦ w is just the identity. The morphism w is called
the Atkin-Lehner involution. (It swaps the two cusps.)

Now we can get rid of another unwieldy feature of the process suggested in
Section 3.3: that of determining q from E4(q) and E6(q) and using this value to
evaluate other q-series. That would be a very tedious task which can be sidestepped
as follows. The functions j(q) and j(q`) are known to satisfy a polynomial relation,
the Kronecker relation:

Φ(j(q), j(ql)) = 0,

for a certain Φ = Φ` ∈ Z[X, Y] that can be determined explicitly. The polynomial
Φ has degree ` + 1 in each variable.

To explain how to use the Kronecker relation, we need some notation. For any
q-series g, denote the q-series g(ql) by g̃. Furthermore, for any q-series g(q), let
g′(q) = q(dg/dq). In fact g′(q) = (1/2πi)(dg/dτ) (recall that q = exp(2πiτ)), so
this g′(q) can be used as a usual derivative of g. When both ′ and ˜ are involved,

AN EXPOSITION OF THE SEA ALGORITHM 11

the ˜ is to be taken last, so g̃′ is intended to mean (̃g′). This is an important point,

since (g̃)′ = `(̃g′).
The q-series j, E4 and E6 enjoy a number of identities, for example

j′

j
= −E6

E4
,

j′

j − 1728
= −E2

4

E6
.

Therefore, if we know the values of j(q), E4(q) and E6(q) (but not that of q), we
can still find the value of j ′(q).

Now we can put the Kronecker relation to good use. Assume that we know the
values of E4(q) and E6(q) and we want to describe the isogeny C∗/qZ → C∗/q`Z.
We can immediately determine j(q) = 1728E4(q)

3/(E4(q)
3 − E6(q)

2), and by the
identities above, also the value of j ′(q). Plugging the value of j(q) into the Kro-
necker relation, we obtain a polynomial whose ` + 1 roots are the possible values
of j(q`) = ̃. Differentiating the Kronecker relation (using the notation for partial
derivatives introduced in Section 2.6), we obtain

j′Φ1(j, ̃) + `̃′Φ2(j, ̃) = 0.

For each candidate for ̃, this allows us to deduce the value of ̃′, and hence that
of Ẽ4 and Ẽ6 by the identities above (which of course remain valid if we plug

in q` instead of q). We can also get the value of E2 − `Ẽ2 for p1 by looking
at the second derivative of the Kronecker relation and then utilizing some more
complicated identities to get at E2, but we won’t do that since there is an even
better way. The aspect of this method that needs improving is its use of Φ`: that
equation has extremely large coefficients (which would actually be fine with us since
we are only trying to compute it modulo p in the end), and determining it requires
that we calculate using approximately 2`2 coefficients of a certain power series. The
improved method cuts that 2`2 to about 2`v, where v is less than `/24 + 1.

What one should do instead is to choose a suitable q-series f that is a function
on X0(`). We also require that f be invariant under the Atkin-Lehner involution w.
For technical reasons (that will be explained in Section 3.5), we pick f to have poles
only at the cusps, and we want those poles to have relatively low order. Then we
find by the process of Section 3.5 a polynomial relation

Ψ`(f, j) = 0.

By the w-invariance of f , we also have

Ψ`(f, ̃) = 0.

Hence given j, we can find all possible values of f , and for each possible value of f ,
we can get all values of ̃. We can take partial derivatives of the above two relations
and gradually deduce all the information we need to describe our isogeny.

It is possible for distinct pairs (j1, ̃1) and (j2, ̃2) to correspond to the same value
of f . Therefore, starting from j1, we might get this f and end up with ̃2. However,
the p1, p2, . . . of Section 2.8 obtained from (j1, f, ̃2) will not be power sums of the
roots of a degree d polynomial, and hence will be deemed invalid because sd+i 6= 0
for some small i. Readers not satisfied with this test are referred to Section 3.11.

The calculations needed are explained in Morain’s [15, 3.2.2]. (The second for-
mula on page 273 contains a typo: a denominator should have a 6 instead of a 2.
However, it is evident that the correct version was used as input for the subsequent
calculations. Also, the numerical example on top of page 274 is of course for ` = 31,
not 23.) Morain’s notation is similar to ours, the following conversion rules apply:

12 JÁNOS A. CSIRIK

Morain here Morain here Morain here
F f ∂FF Ψ11(f, j) ∂FF∗ Ψ11(f, ̃)
J j ∂FJ Ψ12(f, j) ∂FJ∗ Ψ12(f, ̃)

J̃ ̃ ∂JJ Ψ22(f, j) ∂JJ∗ Ψ22(f, ̃)
∂F Ψ1(f, j) ∂F∗ Ψ1(f, ̃)
∂J Ψ2(f, j) ∂J∗ Ψ2(f, ̃)

The polynomials Φ` and Ψ` are not the only ones that can be used here (although
Ψ` is the optimal one in a certain sense). For an analysis of these and related
polynomials and algorithms for computing them, see [2].

3.5. Obtaining Ψ` from f . Using the terminology of Section 3.4, we introduce
another modular curve. It is X(1), and it parametrizes isomorphism classes of
elliptic curves. As a Riemann surface, X(1) is just the complex numbers plus a
cusp that is considered to lie “at infinity”: each finite number corresponds to the
elliptic curve with that j-invariant. (The cusp does not parametrize an elliptic
curve, it is just there to make our object compact and geometrically nice.) If we
agree that j =∞ at the cusp, then j gives an isomorphism between X(1) and the
complex projective line.

There is a “degeneracy” morphism φ : X0(`) → X(1). It sends the point
parametrizing E → E1 to the point parametrizing E (and sends both cusps of
X0(`) to the unique cusp of X(1)). The map φ is a ramified Galois covering. Using
the coordinate τ on X0(`) (recall that q = exp(2πiτ)), for any value of τ , the set
{τ,−1/τ,−1/(τ + 1), . . . ,−1/(τ + `− 1)} is invariant under the deck transforma-
tion group of φ. So if g is any function on X0(`), then any elementary symmetric
polynomial s in {g(τ), g(−1/τ), g(−1/(τ + 1)), . . . , g(−1/(τ + `− 1))} is actually a
pullback of a function on X(1). Therefore s “is” a rational function in j.

Since wτ = −1/`τ , if f is a w-invariant function on X0(`) then all the coefficients
of the polynomial

Ψ(F) = (F − f(τ))

`−1∏

k=0

(
F − f

(−1

τ + k

))

= (F − f(τ))
`−1∏

k=0

(
F − f

(
τ + k

`

))

are rational functions in j(τ). Additionally, if f has poles only at the cusps, then
the coefficients of Ψ(F) must be polynomials in j(q). Hence if we calculate the
q-expansions of the coefficients of Ψ(F), we can read off what those polynomials in
j(q) must be. Thereby we obtain a polynomial relation

Ψ`(F, J) = 0

which is satisfied by F = f(q) and J = j(q).
It remains to calculate the q-expansions of the coefficients of Ψ(F), given the

q-expansion of f . (The question of picking a suitable f with a known q-expansion
will be addressed in Section 3.6.) Let ζ = exp(2πi/`) and

fr(q) =
∑

n

a(n, r)qn.

AN EXPOSITION OF THE SEA ALGORITHM 13

Then

f

(
τ + k

`

)r

= fr(q1/`ζk) =
∑

n

a(n, r)qn/`ζkn

Summing the above from k = 0 to k = `− 1, the roots of unity cause the fractional
powers of q to cancel each other out, and we are left with

sr(q) =

`−1∑

k=0

f

(
τ + k

`

)r

= `
∑

n

a(`n, r)qn.

These sr(q) are exactly the power sums of the roots of the polynomial
∏`−1

k=0

(
F − f

(
τ+k

`

))
.

From there we can obtain its coefficients cr(q) in the usual manner, from which the
coefficients Cr(q) of Ψ(F) come out. The details are given in Section 2.4.

3.6. Finding a good f(q) using hands-on methods. Let X+
0 (`) denote the

smooth curve that is the quotient of X0(`) by the Atkin-Lehner involution w. The
requirements of Section 3.4 and 3.5 then translate simply to finding (a lot of initial
coefficients of) the q-expansion of a certain non-constant function f on X+

0 (`). This
f is required to have a pole only at the (unique) cusp of X+

0 (`), and the order v of
this pole should be as small as possible. Denote the genus of X+

0 (`) by g+
0 (`), and

the genus of X0(`) by g0(`). A simple application of the Riemann–Roch theorem
tells us that we can always find such a function f with v ≤ g+

0 (`)+1. By [15, Thm.
2.1] and the fact that g0(`) is about `/12, we confirm that we can always get a v no
bigger than about `/24. (For each `, the geometric properties of X+

0 (`) determine
what the smallest v is. The definition of the cusp being a Weierstrass point of the
curve is that v < g+

0 (`) + 1 can be achieved.
In fact, if ` is very small then finding an f is straightforward. In this case Ψ`

also has very small coefficients, so we may as well just determine it from the f in
advance, and hardwire the polynomial Ψ` into our program.

For instance, if ` ∈ {3, 5, 7, 13}, the curve X0(`) is rational, isomorphic to the
projective line via

h(q) =

(
η(q)

η(q`)

)24/(`−1)

.

(Here we use η(q) = q1/24η̄(q), c.f. [9, The rational case in Section 4].) This h has
a single pole at q = 0. Since (w∗h)h = l12/(`−1), we conclude that

f(q) = h(q) + `12/(`−1)/h(q)

is a degree-1 function on X0(`) that is invariant under the action of w. Therefore
it is a function on the rational curve X+

0 (`), with a single pole at the cusp. The q-
expansion of f is easily calculated to any reasonable precision by using the explicit
definition of h(q). For example, for ` = 3 we get

f(q) = q−1 − 12 + 783q + 8672q2 + 65367q3 + · · ·
For ` ∈ {11, 17, 19, 23}, we use ad hoc methods to produce our function f .
The case ` = 11 is treated explicitly in [15, Section 2.3.1]. A suitable f is given

as

f(q) =

(
θ([2, 1; 1, 6], q)

η(q)η(q11)

)2

− 1 = q−1 + 5 + 17q + 46q2 + · · ·

14 JÁNOS A. CSIRIK

(For information on θ-series and our notation, refer to [14, Section 4.9, especially
Corollary 4.9.5.(3)].)

Now consider the case ` = 17. First we write down the q-series

f1(q) = (17E2(q
17)−E2(q))/24,

f2(q) = 172E4(q
17) + E4(q),

f3(q) = θ([12, 1, 0, 3; 1, 2, 2, 1; 0, 2, 8, 3; 3, 1, 3, 4], q).

All three of these functions are modular forms with respect to the group Γ0(17).
The forms f1, f2, f3 have weight 2, 4, 2 respectively. The functions f1, f3 are anti-
invariant under the action of the Atkin-Lehner involution, whereas f2 is invariant.
Therefore the q-series

a(q) = f2
3/f2 = 1/290 + (46/4205)q + · · · ,

b(q) = f1/f3 = 2/3− (1/3)q + · · ·
are functions on X+

0 (17). They satisfy the equation

(b3 − 19

3
b2 +

15

4
b− 1

4
)a + (

1

360
b− 1

1080
) = 0.

The above equation can be considered a singular equation of the curve X+
0 (17).

Therefore its normalization (desingularization) is isomorphic to X+
0 (17). The given

equation is only singular at the point at infinity in the direction b = 0, where
it has an ordinary triple point. By blowing up the singularity, we see that the
normalization is a space curve that lies on a nonsingular the quadric surface in P3.
The normalization itself is a (1,3)-curve on the surface. (For details of the blowing
up process and the naming convention for curves on the nonsingular quadric surface,
refer to [11, Section I.4 and (II, Ex. 5.6)].) In the end it turns out that b gives an
isomorphism between X+

0 (17) and the projective line. The cusp q = 0 corresponds
to b = 2/3. Since we want a pole at the cusp, we set

f =
−1/3

b− 2/3
= q−1 + 3 + 7q + 14q2 + 29q3 + · · ·

The cases ` = 19 and ` = 23 may be handled in a similar way.

3.7. Finding a good f(q) by lifting it from characteristic `. The difficulty
in finding a good f is essentially that we have to know about some complicated
geometric properties of the curve X+

0 (`). An idea of Atkin is very useful in this
context. Instead of trying to find the coefficients in the q-expansion of f , we try to
find them modulo some prime number and use those values to guess the original
coefficients in f . With any luck, the reductions of the coefficients of f will have to
do with a simpler curve and will therefore be simpler to calculate.

We shall reduce X+
0 (`) modulo `. Formally, this amounts to taking the model

X+
0 (`) that Deligne and Rapoport define over Z`, and considering its special fiber

X+
0 (`)/F`

. The curve thus obtained is not smooth, but it is very simple: it is
isomorphic to the projective j-line over F` with a certain number of simple double
points. (For details, see [6, Thm. 6.9].)

The double points result from the identification of the points x and x` for each
of x ∈ S, for a certain set S. To define S, we need to talk about supersingular

j-invariants. Let K be any field of characteristic `. In this more general setting,
there is still a notion of whether an elliptic curve defined over K is ordinary or
supersingular. For example, we may say that a curve E is supersingular if E[`] = 0,

AN EXPOSITION OF THE SEA ALGORITHM 15

otherwise it is ordinary. This is consistent with our previous definition of super-
singular in the case where K = F` (for ` ≥ 5), since for E defined over such an
F`, E[`] = 0 occurs if and only if4 #E(F`) = ` + 1. (Recall that the notation E[`]
stands for the points of order ` on E defined over the algebraic closure of the base
field.) It is an interesting fact that for any field K of characteristic ` and any elliptic
curve E defined over that field, the curve is supersingular if and only if j(E) ∈ T ,
for a certain finite set T ⊆ F`2 . Then S is just the set of those elements of T that
are not in F`. We shall discuss how to find the set S explicitly in Section 3.8.

Therefore, a function f on X+
0 (`)/F`

that has its only pole at the cusp is nothing

but a polynomial function P (j) in j with the property that P (x) = P (x`) for each
x ∈ S.

Assume now that we have already found a suitable function f on X+
0 (`). Then its

reduction modulo ` is just a function P (j) on X+
0 (`)/F`

. From what was described
above (and with our explicit knowledge of the set S), we can determine the non-
constant P of lowest degree v that can occur in this way. Then we could just
evaluate

P (j(q)) mod `

and lift the coefficients back to characteristic 0 to obtain our original f .
So far, so good, but there are two difficulties that we need to address.
Firstly, we need some explicit bounds on the coefficients of f to make sure that

our lifting is unique. However, we expect the coefficients of f to increase exponen-
tially, and therefore there is no chance that we could lift the (at least) hundreds
of coefficients that we need. Atkin’s laundering process solves this problem. If
(` + 1)/24 > v, then we can look at the function

g(q) = f(q)η(q)η(q`).

It is a cusp form of weight 1, level ` (and some character), and therefore its nth
coefficient is only O(nε). Furthermore, if g(q) is also a newform then we have an
explicit bound: the nth coefficent is no more than the sum of divisors of n. In fact,
if g(q) is a linear combination (with small coefficients) of newforms, then we still
have a good explicit bound on the size of the coefficients, enabling us to reconstruct
a lot of them from their mod ` reductions, which we obtain by calculating

P (j(q))η(q)η(q`) mod `.

A suggestion of Atkin on how to make g(q) a linear combination of newforms with
small coefficients is to choose P in such a way that the coefficient of q(`+1)/24 in
P (j(q))η(q)η(q`) mod ` is 0. This amounts to modifying the constant term of P (X).

A second problem has to do with the possibility that the q-expansion of f might
start with some terms that are divisible by ` and therefore would be visible in
the mod ` picture. This does not seem to occur for any of the `s in use. Atkin,
Elkies and yours truly have calculated a number of examples and confirmed that
this phenomenon did not occur there.

Of course, once we have a lot of coefficients of g(q), we can find a lot of coefficients
of

f(q) = g(q)/(η(q)η(q`)).

4For ` = 2, 3, we might also have #E(F`) = 1 or #E(F`) = 2` + 1.

16 JÁNOS A. CSIRIK

The above process works only if the condition (` + 1)/24 > v is satisfied. This
is the case if ` ≥ 29, with the exceptions ` = 37, 43, 67, 163.

Finally, we remark that a suitable g can also be found either as a combination
of suitably chosen theta-series (see [1]) or by considering the action of a certain
Hecke operator on the modular form η(q)η(q`) (as in [16]).

3.8. Finding functions on X+
0 (`)/F`

. Let H`(X) ∈ F`[X] denote the polynomial
whose roots are exactly the set T of supersingular j-invariants in characteristic `.
This polynomial is easily calculated in a number of ways, for example by using [15,
Thm. 2.2].

Since all elements of T are contained in F`2 , the polynomial H`(X) splits com-
pletely into linear and quadratic factors. Let H∗

` (X) denote the product of the
quadratic factors (which is easily calculated once H`(X) is known). The roots of
H∗

` (X) are exactly the elements of the set S mentioned in Section 3.7.
We are aiming to find a non-constant polynomial P ∈ F`[X] of the lowest possible

degree that satisfies

P (x) = P (x`)

for all x ∈ S. This is equivalent to saying that

P (X`)− P (X) ≡ 0 (mod H∗

` (X)).

Indeed, this is the same as saying that P (X) is in the kernel of the Berlekamp
matrix associated to H∗

` (X). Therefore, we merely need to find a vanishing linear
combination of the quantities X` − X mod H∗

` (X), X2` − X2 mod H∗

` (X), X3` −
X3 mod H∗

` (X), . . . , and the corresponding linear combination of X, X2, X3, . . .
will give us P (X).

Finally, we also need to adjust the constant term of P (X) as indicated in Sec-
tion 3.7.

3.9. Obtaining the rest of the coefficients of h(X). In [9], in the subsection
titled The kernel of the isogeny in Section 3, Elkies carefully explains how plugging
the q-expansions for the x and y coordinates on E1 = C∗/q`Z into the derivative of
the Weierstrass equation of that curve gives a recursion on the coefficients of h(X)
that enables one to find all coefficients once a4, a6, p1, ã4, ã6 are known. The actual
formulae deduced from there are listed in Section 2.7.

3.10. Isogenies of elliptic curves over Fp. Although in the previous sections
we worked over C, exactly the same formulae work over Fp. We can justify this
using Deuring’s lifting theorem: for any isogeny E → E1 over Fp, we can just lift
the coefficients to a number field and reduce them again to when we worked out
all the data we needed. For details, consult [19, §7]. We could also appeal to the
algebraic definition of modular forms as sections of certain sheaves and arrive at
their q-expansions that way.

Secondly, for an ordinary elliptic curve defined over Fp with j-invariant not equal
to 0 or 1728, an isogeny is defined over Fp if and only if j, f, ̃ ∈ Fp (see [19, Prop.
6.1a]).

3.11. Checking the correctness of h(X). Note that once a proposed h(X) is
determined, it is easy for the suspicious user to check (without using any methods
based on modular curves) that it has the claimed properties.

AN EXPOSITION OF THE SEA ALGORITHM 17

Firstly, calculating `(X, Y) (mod h(X), Y 2 − a4X − a6), we can confirm that it
is neutral element of the elliptic curve, and thereby show that h(X) is indeed the
polynomial associated to some order ` subgroup B of E. Secondly, the existence of
some e such that e(X, Y) ≡ (Xp, Y p) (mod h(X), Y 2 − a4X − a6) shows that this
subgroup B is invariant under the action of the Frobenius morphism.

3.12. Determining e given h(X). We have now described a subgroup B of E[`]
where Frobenius acts by multiplication by e. Determining the e for which

e(X, Y) ≡ (Xp, Y p) (mod h(X), Y 2 −X3 − a4X − a6)

amounts to determining e such that eQ = FQ for all Q ∈ B. But since B is cyclic
of prime order, it suffices to check eQ = FQ for any one nonzero Q ∈ B. Therefore
we may replace h by any nontrivial factor h′ of h in our calculations, since this just
amounts to checking eQ = FQ for just those (at least one nonzero) Q ∈ B where
h′ vanishes on the x-coordinate.

It is evident that h(X) has no double roots. It is also true that h(X) will
split into factors each of which have degree s(e), where s(x), the semi-order of x,
is the smallest positive integer n such that xn ≡ ±1 (mod `). Indeed, let Q =
(x0, y0) be any particular element of B. Then e(x0, y0) = (xp

0, y
p
0) and therefore

(xm, ym) := em(x0, y0) = (xpm

0 , ypm

0). Therefore xpm

0 = xm = x0 if and only if
em ≡ ±1 (mod `). By definition, the smallest m for which this occurs is s(e), so
the minimal polynomial of x0 has degree s(e) as claimed.

To calculate the e for which e(X, Y) ≡ (Xp, Y p) holds, we just take some num-
ber s with the property that the coordinates sP are easy to calculate from the
coordinates of P , for any point P on the curve. For example, for s = 2 we have
the duplication formulas. This s will also have to have the property that sk hits all
possible residue classes modulo `. Actually, since P and −P have the same x coor-
dinates and opposite y coordinates, so it is sufficient for sk to hit either a residue
class or its negative. A number with such a property may be called a semiprimitive

root for `. Determining a good small s for each ` is trivial. For this algorithm,
s ≤ 11 will suffice (see Section 5.2).

As for the calculation, observe that all can be done in the ring Fp[X]/(h(X)). We
represent each point that occurs as (P1(X), Y P2(X)). The appropriate formulas
for taking s times a point are easily derived from the formulas on page 105 in [20].

Note that finding e (given h(X)) can be carried out faster by using a baby step–
giant step or similar method, with the arithmetic carried out as in [3, Chapter
IV].

3.13. Dewaghe’s improvement. L. Dewaghe proposed a method that makes
finding e significantly faster when deg(h) is odd. This condition is bound to occur
when ` ≡ 3 (mod 4), since deg(h) divides (` − 1)/2 which is odd in this case. Of
course deg(h) might happen to be odd also when ` ≡ 1 (mod 4).

According to [7, Theorem 1 of Section 3.2], if deg(h) is odd and the x-coordinates
of λ(X, Y) and (Xp, Y p) match, then

e = λs(λ)

(
r

p

)
λ.

Here r is the resultant of h(X) and w(X) = X3 + a4X + a6.

18 JÁNOS A. CSIRIK

3.14. The accuracy to which f(q) needs to be calculated. We will demon-
strate that it is sufficient to evaluate the coefficients of f(q) up to and including
that of q2`v−v .

Let g(q) be any q-series that is only evaluated to finite precision. Let v(g) be
the order of the pole at q = 0 and let t(g) be the smallest integer such that the
coefficient of qt(g) is not known. Mnemonically,

g(q) = cq−v(g) + · · ·+ O(qt(g)),

where c is a nonzero constant. We know that v(f) = v. Assume now that t(f) =
2`v − v + 1. Using the notation of Section 2.4, we shall prove that t(Ck) > 0 for
0 ≤ k ≤ `+1, and therefore that Ψ` can indeed be determined from the coefficients
of f that are known.

For any 1 ≤ k ≤ `, evidently v(fk) = kv(f) = kv, and

t(fk) = 2`v − v + 1− (k − 1)v = v(2`− k) + 1.

Let bxc denote the largest integer not exceeding x. By the definition of sk, for all
1 ≤ k ≤ `, we conclude that

v(sk) ≤ bkv/`c
t(sk) = bv(2`− k)/`c+ 1.

The inequality sign above reflects the fact that a “randomly picked” coefficient in
gk might happen to be zero, in which case sk might have a pole of lower order than
might have been supposed at first.

Now looking at the definition of ck and using the elementary fact that for any
pair a, b of integers, we always have ba/`c+ bb/`c ≤ b(a + b)/`c, we conclude that

v(ck) ≤ bkv/`c.

(This can be proved by induction on k, starting with k = 1.)
We can also show by induction that

t(ck) ≥ t(sk) = bv(2`− k)/`c+ 1.

Indeed, the base case k = 1 is obvious. Then by the same elementary fact,

t(ck−rsr) = min(t(ck−r)− v(sr), t(sr)− v(ck−r)) ≥ t(sk),

and the rest is clear.
Looking at the definition of Ck, we see that if suffices to show that for all 1 ≤

k ≤ `,

t(fck) = min(t(f)− v(ck), t(ck)− v(f)) ≥ 1.

This is equivalent to two inequalities, the first one of which is immediate. The
second one comes down to

bv(2`− k)/`c+ 1 ≥ v + 1,

which follows from k ≤ `.

AN EXPOSITION OF THE SEA ALGORITHM 19

4. Possible Improvements

4.1. Factoring h(X). The following considerations can be used to speed up the
determination of e given h(X). As mentioned in Section 2.9, we might replace
h(X) by any of its factors h′(X). This has the advantage that the lower the degree
of h′(X) we use, the faster the process in the rest of Section 2.9 runs. Dewaghe’s
method gives an additional boost of speed if deg(h′) is odd.

However, factoring h(X) to obtain h′(X) might take a long time. Therefore, an
alternative strategy might be to not factor h(X), set h′(X) = h(X), and hope that
we gain more time on factoring than we lose later.

In a test implementation, these two methods were about equally fast. Here is
a method that is faster than either of the above. Recall that h(X) splits into
irreducible factors of equal degree. For each `, choose integers o` and e`.

The method is this. For each odd divisor N ≤ o` of deg(h) = (` − 1)/2, check
if h(X) has a factor h′(X) of degree N . If not, for each even divisor N ≤ e` of
deg(h) = (`− 1)/2, check if h(X) has a factor h′(X) of degree N . If still no divisor
h′ is found, set h′ = h.

The constants o` and e` need to be chosen based on how long the particular
implementation at hand can find factors of degree N of h(X) for various N , and
the speed the rest of Section 2.9 takes as a function of the degree of h.

4.2. Doing with s ≤ 5. A simple calculation shows that for s ≥ 3 odd,

deg(as) = s2,

deg(bs) = s2 − 1,

deg(cs) = 3(s2 − 1)/2,

deg(ds) = 3(s2 − 1)/2.

Hence carrying out the step in Section 2.9 will require plugging polynomials into
other polynomials of degree up to 180. (Degree 180 occurs for ` = 109, s = 11.)
However, we can get along with using s ≤ 5, in which case we have to plug into
polynomials of degree no more than 36. This is because whenever s > 5 occurs
(` = 41, 109), it turns out that 6 is a semiprimitive root modulo `. We could use
s = 6 here, but also we can just break down multiplication by 6 to a multiplication
by 2 followed by a multiplication by 3, and therefore we can always restrict ourselves
to s ∈ {2, 3, 5}.

4.3. Isogeny cycles. If ` is a good auxiliary prime, we can often continue by
finding a chain of isogenies from E to E1 to E2 to . . . to Ek etc. Then we can get a
degree `k−1(`− 1)/2 kernel polynomial in basically no time and we can determine
t modulo `k. For example, when this works for ` = 11, we can find the eigenvalue
modulo 121, which takes relatively long (about as long as for ` = 127), but at least
Ψ11 does not have to be calculated. Note that here the arguments in Section 3.12
about factoring h(X) do not apply. Therefore we must either not factor h(X) or
be very careful.

4.4. Atkin primes. The algorithm can be made to use slightly fewer auxiliary
primes (resulting in a reduction of both running time and memory use) by using an
idea of Atkin. Even if Ψ`(F, j) has no roots in Fp, we can get some restrictions on
t2 mod ` by looking at the factorization of Ψ`(F, j). It will usually split into factors
which all have the same degree r. The knowledge of r will usually eliminate about

20 JÁNOS A. CSIRIK

half the possibilities for t mod `, but can even determine ±t mod ` if r is less than
5 (which is not that common). For details, consult [1] and [19, Proposition 6.2].

4.5. Catching kangaroos. Running our algorithm for many (but not all) auxil-
iary primes, we arrive at a stage where there are only a relatively small number
of possible t (and they form an arithmetic sequence). Since #E(Fp) = p + 1 − t,
for the correct t the number p + 1− t annihilates all points on E (under the group
law of E). A t for which p + 1− t annihilates several random points on E is then
probably the correct one. (We use the fact that E(Fp) “tends” to be cyclic for
more certainty, we could also check the quadratic twist E ′ of E, which has p+1+ t
points. For details, see [19, Section 3, especially Theorem 3.2].)

For a random point P on E, we can use either Shanks’ baby step–giant step
method or Pollard’s lambda (kangaroo trap) method to determine for which of the
possible ts will p + 1− t annihilate P .

A more significant reduction in running time would result from not dropping
quite as many auxiliary primes as our kangaroo trap would allow. Then the proba-
bility of the algorithm succeeding would go up, and therefore we wouldn’t have to
try quite as many curves to get one with the properties described in Section 1.

5. Tables

5.1. Table of the P`(J). Note that the primes above 197 do not appear in the
sets As or Al. They are provided here for the reader’s convenience in implementing
the algorithm for use with primes p with more than 200 bits.

` P`(J)
29 J + 11
31 J + 1
41 J − 5
47 J + 9
53 J2 − 3J + 26
59 J + 24
61 J2 − 23J − 1
71 J − 33
73 J3 + 32J2 − 30J + 1
79 J2 + 14J − 1
83 J2 + 7J − 2
89 J2 + 26J − 17
97 J4 + 32J3 + 42J2 − 24J − 2
101 J2 + 27J − 13
103 J3 + 34J2 − 7J − 2
107 J3 + 16J2 − 32J + 11
109 J3 − 51J2 + 52J
113 J4 − 37J3 + 24J2 − 3J − 36
127 J4 − 54J3 − 41J2 − 32J − 2
131 J2 − 47J − 51
137 J5 − 20J4 − 23J3 + 53J2 + 65J + 52
139 J4 − 56J3 − 18J2 + 40J + 1
149 J4 + 5J3 − 61J2 + 48J − 57
151 J3 + 34J2 − 7J − 1

AN EXPOSITION OF THE SEA ALGORITHM 21

` P`(J)
157 J6 − 67J5 − 48J4 − 70J3 + 30J2 − 5J + 2
167 J3 − 60J2 + 3J − 14
173 J4 − 34J3 − 60J2 − 74J − 22
179 J3 − 83J2 + 18J − 62
181 J6 + 62J5 + 12J4 + 82J3 − 10J2 + 51J − 1
191 J3 + 60J2 − 25J + 56
193 J6 − 24J5 − 15J4 − 70J3 − 53J2 + 58J + 1
197 J6 + 68J5 + 14J4 − 66J3 + 3J2 − 59J + 59

199 J5 + 62J4 + 19J3 + 46J2 + 87J + 1
211 J7 + 68J6 + 88J5 + 77J4 + 67J3 − 10J2 − 82J + 2
223 J7 − 78J6 + 108J5 − 41J4 + 92J3 + 78J2 − 17J + 1
227 J5 − 88J4 + 45J3 + 62J2 + 84J − 73
229 J7 + 60J6 + 39J5 − 37J4 − 114J3 − 42J2 + 59J + 1
233 J7 − 81J6 + 91J5 + 30J4 + 115J3 + 105J2 + 96J + 30
239 J4 − 107J3 − 39J2 − 9J − 28
241 J6 + 115J5 − 54J4 − 105J3 + 40J2 + 85J + 1
251 J4 + 36J3 + 87J2 − 8J + 62
257 J6 − 94J5 − 112J4 − 51J3 − 124J2 + 42J − 122
263 J5 − 37J4 − 94J3 − 40J2 − 78J + 74
269 J6 + 109J5 − 38J4 − 7J3 + 62J2 + 4J − 120
271 J6 − 127J5 − 69J4 + 132J3 + 46J2 − 63J − 2
277 J9 − 48J8 − 70J7 + 3J6 − 87J5 + 25J4 + 105J3 + 39J2 + 24J + 1
281 J7 + 131J6 − 34J5 − 36J4 + 101J3 + 114J2 + 115J + 53

5.2. Table of the s for each ` ∈ A.

` s
3, 5, 7, 11, 13, 19, 23, 29, 47, 53, 59, 61, 71, 79, 83, 101 2
103, 107, 131, 139, 149, 167, 173, 179, 181, 191, 197 2

17, 31, 89, 113, 127, 137 3
73, 97, 151, 157, 193 5

41 7
109 11

5.3. Table of the Ψ` for each ` ∈ As.

Ψ3(F, J) = F 4 + (−J + 792)F 3 + (−36J + 221400)F 2

+ (1916J + 24690528)F + (J2 + 50976J + 803894544)

Ψ5(F, J) = F 6 + (−J + 780)F 5 + (−30J + 218940)F 4

+ (310J + 25968800)F 3 + (13700J + 1177897200)F 2

+ (38424J + 22576632000)F + (J2 − 614000J + 155720872000)

22 JÁNOS A. CSIRIK

Ψ7(F, J) = F 8 + (−J + 776)F 7 + (−28J + 217756)F 6

+ (21J + 26195512)F 5 + (6328J + 1276406726)F 4

+ (39361J + 31050881848)F 3 + (−240492J + 404938789276)F 2

+ (−2176581J + 2721214073864)F

+ (J2 − 1711008J + 7427483226241)

Ψ11(F, J) = F 12 + (−J + 684)F 11 + (55J + 157410)F 10

+ (−1188J + 12515580)F 9 + (12716J + 75763215)F 8

+ (−69630J + 76077144)F 7 + (177408J − 207606564)F 6

+ (−133056J − 34321320)F 5 + (−132066J + 418524975)F 4

+ (187407J − 477130500)F 3 + (−40095J + 270641250)F 2

+ (−24300J − 82012500)F + (J2 + 6750J + 11390625)

Ψ13(F, J) = F 14 + (−J + 772)F 13 + (−26J + 216424)F 12

+ (−156J + 26333528)F 11 + (1508J + 1359640022)F 10

+ (21658J + 39120460496)F 9 + (39624J + 716780223796)F 8

+ (−612742J + 8956723925032)F 7

+ (−3355976J + 79070093432161)F 6

+ (454779J + 500196729175884)F 5

+ (43741490J + 2260671730897788)F 4

+ (95939974J + 7142292018579744)F 3

+ (−41335164J + 15009662255513328)F 2

+ (−291162600J + 18874201488396480)F

+ (J2 − 174668400J + 10755802087387200)

Ψ17(F, J) = F 18 + (−J + 690)F 17 + (51J + 160191)F 16

+ (−1105J + 12849212)F 15 + (13243J + 77940903)F 14

+ (−95659J − 24306702)F 13 + (424065J − 489756655)F 12

+ (−1110355J + 856070496)F 11 + (1454945J + 247945272)F 10

+ (−73746J − 4127455840)F 9 + (−2450210J + 10326614640)F 8

+ (3131026J − 15993234432)F 7

+ (−1104830J + 18158824448)F 6

+ (−1073992J − 15889021440)F 5

+ (1392232J + 10788499200)F 4

+ (−557600J − 5622784000)F 3

+ (−2720J + 2154240000)F 2

+ (67200J − 537600000)F + (J2 − 16000J + 64000000)

AN EXPOSITION OF THE SEA ALGORITHM 23

Ψ19(F, J) = F 20 + (−J + 664)F 19 + (76J + 143260)F 18

+ (−2622J + 9204360)F 17 + (54454J − 176115066)F 16

+ (−761425J + 1108178952)F 15 + (7598556J − 1742337316)F 14

+ (−55989713J − 13420942600)F 13

+ (310967414J + 79673435585)F 12

+ (−1317638334J − 133492721376)F 11

+ (4284347658J − 271425795648)F 10

+ (−10696404825J + 1738318231104)F 9

+ (20413753140J − 3257912161280)F 8

+ (−29485216120J + 528231178240)F 7

+ (31694225470J + 10718241992704)F 6

+ (−24698209440J − 26958821326848)F 5

+ (13397395520J + 36334713176064)F 4

+ (−4738229120J − 31060143636480)F 3

+ (973578240J + 16944463872000)F 2

+ (−91238400J − 5430382166016)F

+ (J2 + 1769472J + 782757789696)

Ψ23(F, J) = F 24 + (−J + 720)F 23 + (23J + 179952)F 22

+ (−161J + 17282016)F 21 + 441081120F 20

+ (3864J + 5678198784)F 19 + (−5681J + 45492865088)F 18

+ (−46644J + 252605710080)F 17

+ (53084J + 1038071734272)F 16

+ (393024J + 3294356631552)F 15

+ (19136J + 8309302456320)F 14

+ (−1978368J + 16991995871232)F 13

+ (−2689666J + 28563290271744)F 12

+ (2882544J + 39839110889472)F 11

+ (11625488J + 46370418130944)F 10

+ (11002464J + 45154515419136)F 9

+ (−3833824J + 36762400456704)F 8

+ (−19783680J + 24919460020224)F 7

+ (−21906304J + 13946021740544)F 6

+ (−11787776J + 6353857806336)F 5

+ (−1554432J + 2304837156864)F 4

+ (2213888J + 642483486720)F 3

+ (1648640J + 129654325248)F 2

+ (516096J + 16911433728)F

+ (J2 + 65536J + 1073741824)

24 JÁNOS A. CSIRIK

References

[1] A. O. L. Atkin. Several public email messages. unpublished, 1991–1992.
[2] Ian F. Blake, János A. Csirik, Michael Rubinstein, and Gadiel Seroussi. On the computation

of modular polynomials. preprint, 1999.
[3] Ian F. Blake, Gadiel Seroussi, and Nigel Smart. Elliptic Curves in Cryptography, volume 265

of London Mathematical Society Lecture Note Series. Cambridge University Press, 1999.
[4] Henri Cohen. A Course in Computational Algebraic Number Theory, volume 138 of Graduate

Texts in Mathematics. Springer, 1993.
[5] J.-M. Couveignes and François Morain. Schoof’s algorithm and isogeny cycles. In Leonard M.

Adleman and Ming-Deh Huang, editors, Algorithmic number theory, Proceedings of the First
International Symposium (ANTS-I) held at Cornell University, Ithaca, New York, May 6–9,
1994, number 877 in Lecture Notes in Computer Science, pages 43–58. Springer, Berlin, 1994.

[6] P. Deligne and M. Rapoport. Les schémas de modules de courbes elliptiques. In P. Deligne
and W. Kuyk, editors, Modular Functions of One Variable II, volume 349 of Lecture Notes
in Mathematics, pages 143–316. Springer, 1972.

[7] L. Dewaghe. Remarks on the Schoof-Elkies-Atkin algorithm. Mathematics of Computation,
67(223):1247–1252, 1998.

[8] Noam D. Elkies. Explicit isogenies. manuscript, Boston, MA, 1992.
[9] Noam D. Elkies. Elliptic and modular curves over finite fields and related computational

issues. In D. A. Buell and J. T. Teitelbaum, editors, Computational Perspectives in Number
Theory: Proceedings of a Conference in Honor of A. O. L. Atkin, (Chicago, IL, 1995), pages
21–76. AMS, 1998.

[10] Steven Galbraith and James McKee. The probability that the number of points on an elliptic

curve over a finite field is prime. preprint CORR 99–51, University of Waterloo, Centre for
Applied Cryptographic Research, 1999.

[11] Robin Hartshorne. Algebraic Geometry, volume 52 of Graduate Texts in Mathematics.
springer, 1977.

[12] E. Howe. On the group orders of elliptic curves over finite fields. Compositio Math., 85:229–
247, 1993.

[13] T. Izu, J. Kogure, M. Noro, and K. Yokoyama. Efficient implementation of Schoof’s algorithm.
In Kazuo Ohta and Dingyi Pei, editors, Proceedings of ASIACRYPT ’98, volume 1514 of
Lecture Notes in Computer Science, pages 66–79. Springer, 1998.

[14] Toshitsune Miyake. Modular Forms. Springer, 1989.
[15] François Morain. Calcul du nombre de points sur une courbe elliptique dans un cops fini:

aspects algorithmiques. Journal de Théorie des Nombres de Bordeaux, 7:255–282, 1995.
[16] Volker Müller. Ein Algorithmus zur Bestimmung der Punktzahl elliptischer Kurven über

endlichen Körpern der Charakteristik größer drei. PhD thesis, Universität des Saarlandes,
1995.

[17] J.-M. Pollard. Monte Carlo methods for index computation (modp). Mathematics of Com-
putation, 32(143):918–924, July 1978.

[18] René Schoof. Elliptic curves over finite fields and the computation of square roots mod p.
Mathematics of Computation, 44:483–494, 1985.

[19] René Schoof. Counting points on elliptic curves over finite fields. Journal de Théorie des
Nombres de Bordeaux, 7:219–254, 1995.

[20] Joseph H. Silverman. The Arithmetic of Elliptic Curves, volume 106 of Graduate Texts in
Mathematics. Springer, 1986.

AT&T Shannon Lab, 180 Park Ave, Florham Park NJ 07932-0971

E-mail address: janos@research.att.com

