
COUNTING THE POINTS OF AN ELLIPTIC CURVE ON A

LOW-MEMORY DEVICE

JÁNOS A. CSIRIK

Abstract. An important but very memory consuming step in elliptic curve
cryptography is that of coming up with an elliptic curve where the number of
rational points has a large prime factor. This note describes how the Schoof–
Elkies–Atkin algorithm can be carried out to count the number of points on
a given elliptic curve over a (large) prime finite field using little memory. For
field sizes between 160 and 256 bits, the process requires between 15 and 50
kilobytes of memory. This will allow for a more complete implementation of
elliptic curve cryptography on smart cards and other low-memory devices.

1. Introduction

Elliptic curve public key cryptosystems ([9, 7, 1]) are popular since they (pre-
sumably) provide high security at low key lengths. The low key lengths and low
computational complexity make them attractive for use in small devices. The choice
of which elliptic curve to use involves a much more elaborate calculation and is typ-
ically not carried out on the device itself. Instead, pre-certified curves are used.

In this note we shall deal only with elliptic curves defined over finite fields of
prime order, although finite fields of characteristic 2 are also often used in practice.
The current state of belief is that for elliptic curves over the finite field Fp, the
difficulty of the discrete logarithm problem increases exponentially with the size of
the largest prime factor of the number of rational points on the curve, except for
a few special curves that can be detected merely by looking at the order (see [1,
Chapter IV and the references therein]). If the status of the DLP problem does not
change then it is reasonable to use stored curves. To guard against some (presently
unknown) vulnerability of the stored curve, one might want the small device to
generate its curves itself. This will also increase security by easily allowing a large
number of such devices to all have different curves. A way to allow the devices to
generate their own curves is described here.

The first polynomial time algorithm for counting the number of points on an
elliptic curve over Fp was proposed by Schoof in [11]. This method was later
improved by Elkies and Atkin to become the Schoof–Elkies–Atkin algorithm. For
details on the theory and implementation of this algorithm, see [11, 4, 10, 3, 6].
Here we shall primarily use the exposition in [3] (which in turn is based on the
algorithm as presented in [10]).

Given an elliptic curve E defined over Fp, the number of rational points on E is

#E(Fp) = p + 1 − t,

where |t| < 2
√

p. The SEA algorithm proceds by calculating the modular polyno-
mial Ψ`(F, J) for various small primes ` and using it to derive information about
t modulo `. These two steps will be referred to as the modular curve calculation

1

2 JÁNOS A. CSIRIK

and the elliptic curve calculation, respectively. When enough information has been
gathered, the baby step–giant step algorithm (and the Chinese Remainder Theo-
rem) can be used to determine t. The crucial observation is that only Ψ` mod p
is used and that it can be calculated on the fly for each `. Also, the memory in
the modular curve calculation can largely be freed up for the elliptic curve calcula-
tion. The approximate amount of memory used for primes p of various sizes to get
#E(Fp) with a probability of at least 1/2 is given here1:

bits in p kB
160 15
192 24
224 40
256 50

The above sizes for p should provide adequate security for the immediate future, for
more details see [8]. Increasing the amount of memory used allows the calculation
to succeed with a higher probability. A test implementation on a slow Pentium
computer took on the order of an hour per curve.

Note however that the above figures don’t account for the size of the code imple-
menting the algorithm. Taking into account the fact that an elliptic curve crypog-
raphy device will already have subroutines fore dealing with finite field and elliptic
curve arithmetic, we estimate that the code is of comparable size to the memory
used for data.

Since the actual memory use for both code and data will be highly dependent on
the implementation, we shall resist the temptation of going into more refined vari-
ants of the algorithm which increase the size of the code by more than their savings
in data storage, for example the use of Atkin primes. The various improvements
in the references might of course be added “to taste” by the implementer. Similar
remarks apply to fine-tuning the implementation (such as substituting Pollard’s rho
method for the baby step–giant step process), and in particular, making sure that
our device does not run out of power before the calculation ends.

Plug: Readers of this paper will almost certainly be interested in the paper by
A. K. Lenstra and E. Verheul about their XTR system.

2. The Algorithm

We shall describe various ways the algorithm described in [3] needs to be modified
to lower memory consumption. We shall also calculate the memory use at each
step in terms of 32-bit words. A word was chosen as a unit of measurement for
convenience, notwithstanding the fact that our small device might well contain an
8-bit processor.

Given an elliptic curve E defined over Fp, we need to find Ψ` modulo p. Let N
denote the length (in words) of p; for example, N = 5 if the length of p is 160 bits. It
turns out that a very memory-efficient way to get Ψ` is to calculate it modulo various
32-bit primes, get the coefficients over Z by the Chinese Remainder Theorem, and
reduce them modulo p straight away.2 To reduce the penalty associated with the

1If we wish to precalculate and store the modular polynomials Ψ`, then the memory require-
ments in the four cases treated go up to 35, 75, 140 and 200 kB respectively

2The optimal solution would be to vary the length of the modulus according to how far along
we are in the calculation, but that only yields a small decrease in storage over this more simplistic
method.

COUNTING THE POINTS OF AN ELLIPTIC CURVE ON A LOW-MEMORY DEVICE 3

calculation of Ψ` on the fly, the algorithm should be run on several elliptic curves
simultaneously, perhaps as many as needed to find a curve of the right security level
(see [5]). We shall see that this will increase the memory use only insignificantly.

Let R(`) denote the length (in words) of the longest coefficient of Ψ`. In each
case, R(`) is also the number of 32-bit primes we need to get Ψ`. As we have
seen in [3], we need to store T (`) = 8`v + ` + 3 elements of a given finite field
in order to determine Ψ` over that finite field, where v = v(`) is as defined in [3]
(it is less than `/24). The number of coefficients in Ψ` that need to be evaluated
is C(`) = 3(v + 1)(` + 1)/2 + 1 (the unique coefficient that does not need to be
laboriously worked out is that of F `+1, since it is always one). Since C(`) < T (`),
the number of words of memory used for the whole Chinese Remainder Theorem
calculation is

(R − 1)C + T.

In the next step of the algorithm, we need to find the linear factors of f(F) =
Ψ`(F, j) for the j-invariants of the elliptic curves under consideration. Since the
degree of f is ` + 1, we can calculate the linear factors using 4(` + 1)N words of
memory, by taking greatest common divisors with F p−F modulo f , (F +k)(p−1)/2−
1 modulo f for various small integers k. Finding the roots of Ψ`(f, J), which is of
degree 2v, can clearly accomplished using strictly less storage. Since we also need
to store Ψ`, the memory use (expressed in words) of this step is

CN + 4(` + 1)N.

For each of the curves where ` is an Elkies prime, we can clearly get the param-
eters (ã4, ã6, p1) by using less memory than above. Therefore, the memory use of
the whole modular curve calculation is

max((R − 1)C + T, CN + 4(` + 1)N).

For the elliptic curve calculation, we can get from (ã4, ã6, p1) to the kernel poly-
nomial h(X) using less than 4(` + 1)N words of storage. The actual calculation of
e can be carried out using no more than 8 polynomials modulo h(X) at any one
time (see [3]), using 8 deg(h)N = 4(` − 1)N words of memory. Using the isogeny
cycles of [2], we can get t modulo `k using

4(`k − 1)N

words of memory.
The only remaining step that takes a significant amount of storage is the baby

step–giant step process when all the auxiliary primes ` are used up. If there are
only λ2 possibilities for t then a list of λ baby steps and λ giant steps will do.
In fact only one list needs to be stored, and clearly it suffices to store only the
x-coordinates of the points in that list.3 The memory use is

λN.

We remark here that once the point counting is done, we will typically want to
check if the order of the curve as a large prime factor. This can be accomplished
using very little memory by dividing out all the small factors (up to, say, 50), and
subjecting the resulting quotient to a probabilistic primality test.

3It might be even better to use a hash list here if the bigger list size does not slow the calculation
down too much.

4 JÁNOS A. CSIRIK

3. The choice of parameters

The table below presents all the necessary information needed to make our
choices for various lengths of p. All the columns are self-explanatory, except pos-
sibly the third, which shows log2 of the absolute value of the longest coefficient in
Ψ`.

` v(`) log2(|Ψ`|∞) R(`) ` v(`) log2(|Ψ`|∞) R(`)
29 1 38.7 2 101 2 109.0 4
31 1 40.2 2 103 3 177.3 6
41 1 41.2 2 107 3 170.0 6
47 1 56.2 2 131 2 139.9 5
59 1 57.2 2 109 3 161.8 6
53 2 104.3 4 97 4 195.5 7
71 1 70.6 3 113 4 196.0 7
61 2 91.9 3 151 3 191.6 7
79 2 100.1 4 127 4 237.7 8
83 2 109.7 4 167 3 254.8 8
89 2 111.2 4 139 4 219.7 7
73 3 130.1 5 149 4 234.8 8

For p ≈ 2160, we shall try to determine t modulo 27, 34, 53, 72, 112, 132, 17,
19, 23, 29, 31, 41, 47, 53, 59, 61, 71, 73, 79, 83, 89, 101. The maximal storage
requirement for the modular curve calculation is 3830 words (at ` = 101), the
maximal storage requirement for the elliptic curve calculation is 3360 words (at
` = 13). The total memory use therefore is 3830 words, or 15 kilobytes, allowing
the use of the baby step–giant step algorithm with λ = 766. For the other suggested
sizes for p, the calculations work similarly, and the moduli for determining t are
listed below.

2160 27,34,53,72,112,132,17,19,23,29,31,
41,47,53,59,61,71,73,79,83,89,101

2192 27,35,53,72,112,132,17,19,23,29,31,41,47,53,
59,61,71,73,79,83,89,101,103,107,131,109

2224 28,35,53,73,112,132,172,19,23,29,31,41,47,53,59,61,
71,73,79,83,89,101,103,107,131,109,97,113,151,127

2256 28,35,53,73,112,132,172,192,23,29,31,41,47,53,59,61,71,73,
79,83,89,101,103,107,131,109,97,113,151,127,167,139,149

References

[1] Ian F. Blake, Gadiel Seroussi, and Nigel Smart. Elliptic Curves in Cryptography, volume 265
of London Mathematical Society Lecture Note Series. Cambridge University Press, 1999.

[2] J.-M. Couveignes and François Morain. Schoof’s algorithm and isogeny cycles. In Leonard M.
Adleman and Ming-Deh Huang, editors, Algorithmic number theory, Proceedings of the First
International Symposium (ANTS-I) held at Cornell University, Ithaca, New York, May 6–9,
1994, number 877 in Lecture Notes in Computer Science, pages 43–58. Springer, Berlin, 1994.

[3] János A. Csirik. An exposition of the SEA algorithm. preprint, 2000.
[4] Noam D. Elkies. Elliptic and modular curves over finite fields and related computational

issues. In D. A. Buell and J. T. Teitelbaum, editors, Computational Perspectives in Number
Theory: Proceedings of a Conference in Honor of A. O. L. Atkin, (Chicago, IL, 1995), pages
21–76. AMS, 1998.

[5] Steven Galbraith and James McKee. The probability that the number of points on an elliptic
curve over a finite field is prime. preprint CORR 99–51, University of Waterloo, Centre for

Applied Cryptographic Research, 1999.
[6] T. Izu, J. Kogure, M. Noro, and K. Yokoyama. Efficient implementation of Schoof’s algorithm.

In Kazuo Ohta and Dingyi Pei, editors, Proceedings of ASIACRYPT ’98, volume 1514 of
Lecture Notes in Computer Science, pages 66–79. Springer, 1998.

COUNTING THE POINTS OF AN ELLIPTIC CURVE ON A LOW-MEMORY DEVICE 5

[7] Neal Koblitz. Elliptic curve cryptosystems. Mathematics of Computation, 48(177):203–209,
1987.

[8] Arjen K. Lenstra and Eric R. Verheul. Selecting cryptographic key sizes. preprint, 1999.
[9] Victor S. Miller. Use of elliptic curves in cryptography. In Hugh C. Williams, editor, Advances

in cryptology—CRYPTO ’85, Proceedings of the conference on the theory and application of
cryptographic techniques (CRYPTO ’85) held at the University of California, Santa Barbara,
Calif., August 18–22, 1985, pages 417–426. Springer, Berlin, 1986.

[10] François Morain. Calcul du nombre de points sur une courbe elliptique dans un cops fini:
aspects algorithmiques. Journal de Théorie des Nombres de Bordeaux, 7:255–282, 1995.

[11] René Schoof. Elliptic curves over finite fields and the computation of square roots mod p.
Mathematics of Computation, 44:483–494, 1985.

AT&T Shannon Lab, 180 Park Ave, Florham Park NJ 07932-0971

E-mail address: janos@research.att.com

