
On the Computation of Modular Polynomials for

Elliptic Curves

Ian F. Blake1, János A. Csirik1, Michael Rubinstein2?, and Gadiel Seroussi1

1 Hewlett-Packard Laboratories,

1501 Page Mill Road, Palo Alto, CA 94304

ifblake, csirik, seroussi@hpl.hp.com
2 Department of Mathematics

University of Texas at Austin

Austin, TX 78712-1082

miker@math.utexas.edu

Abstract. An essential aspect of the use of elliptic curves over a finite

field in public key cryptosystems is to determine the precise order of

the additive group of rational points of the curve. All known effective

point-counting algorithms for such elliptic curves require the computa-

tion of modular polynomials. Several approaches to the computation of

modular polynomials and variants of them have been considered in the

literature. The purpose of this work is to give a unified treatment of

these approaches, and to report on computational experience with their

efficient implementations.

1 Introduction

Over the past decade there has been increasing interest in elliptic curve cryp-
tosystems, to the point where they are now incorporated into several industry
standards for public key cryptography. For many applications they appear to
offer an attractive alternative to public key systems based on integer factoriza-
tion or finite field discrete logarithms, since they allow for much lower key sizes
for the same level of security, based on current knowledge of the best available
algorithms for the respective underlying problems. These lower key sizes often
translate to greater implementation efficiency to make elliptic curve systems par-
ticularly attractive for low power applications such as smart cards and wireless
products [1].

Elliptic curve systems are based on the discrete logarithm problem on the
additive group of rational points of an elliptic curve over a finite field, rather
than, say, the multiplicative group of a finite field of integers modulo a prime. For
cryptographic reasons, the group order is required to be divisible by a very large
prime. Therefore, determining the precise number of rational points on the curve
(the point-counting problem) is of fundamental importance. This computation
can be challenging since the group orders of practical interest might be of the

? Work done while at Hewlett-Packard Laboratories.

2 Ian F. Blake et al.

order of 2200 or larger. The most successful general algorithm for point counting
to date is Schoof ’s algorithm ([12], [13]). The most practical version of this
algorithm includes improvements due to Elkies and Atkin and is known as the
SEA algorithm.

In this paper we will only consider elliptic curves over prime fields. Let p be
a prime, K = Fp a finite field with p elements, K its algebraic closure, and E
an elliptic curve over K. Let the short Weierstrass equation of E be

E : y2 = x3 + ax + b,

with j-invariant j = 6912a3/(4a3 + 27b2). We denote by E(F) the set of points
on E with coordinates in F , for any field F , K ⊆ F . We refer to E(K) as
the set of points of E, and to E(K) as the set of rational points of E. It is
known by Hasse’s theorem that |E(K)| = p + 1 − t where t is the trace of
the Frobenius endomorphism, bounded by |t| ≤ 2

√
p. Determining t is then

equivalent to determining the group order. The essence of Schoof’s algorithm
is the determination of t modulo primes ` for ` ≤ L where L is the smallest
prime such that

∏

`≤L` > 4
√

p. (In a typical application, L might be between
100 and 200.) It then follows from the Chinese Remainder Theorem (CRT) that
the value of t can be recovered uniquely and the group order obtained. The
number of primes needed is O(log p/ log log p) and L = O(log p). Now we briefly
outline Schoof’s algorithm to determine the value of t modulo a prime `. In
order to avoid various mathematical subtleties, we will stipulate here that all
elliptic curves considered will have j-invariant different from 0 or 1728 and will
not be supersingular (i.e., t 6= 0). These conditions are easily tested for and are
extremely rare for randomly chosen curves. We will also assume that p > 2`+2,
which holds in practical applications, to guarantee that certain inverses modulo
` exist.

The Frobenius endomorphism ϕ of E maps the point P = (x, y) ∈ E(K) to
(xp, yp). It satisfies the Frobenius equation ϕ2(P) − [t]ϕ(P) + [p]P = O, or

(xp2

, yp2

) + [p](x, y) = [t](xp, yp). (1)

Here, for integers m ≥ 0 and curve points P , [m]P = P +P + · · ·+P (m times)
and O is the point at infinity, the neutral element of the group. Restricting P to
E[`], the set of `-torsion points of E, both p and t are reduced modulo ` in (1).
We can compute the left hand side of (1) by using the point addition formulae
and then compare it to the right hand side as t runs through the values modulo `.
The equation will have a solution for exactly one value of t mod `. We calculate
with (1) as though x and y were indeterminates, subject only to the equation
of the curve and the relation φ`(x) = 0, where the `th division polynomial φ`

vanishes exactly at the x-coordinates of points in E[`] (see, e.g., [1]). The degree
of φ` is (`2 − 1)/2 when ` is an odd prime. For large `, the high degree of this
polynomial makes the computations cumbersome. The contributions of Elkies
and Atkin allow us in some cases to replace this polynomial by a so-called kernel
polynomial, of degree (` − 1)/2.

Computation of Modular Polynomials 3

The simplification is achieved when the discriminant of the Frobenius equa-
tion, ∆t = t2 − 4p, is a square modulo `, in which case ` is referred to as an
Elkies prime. Note that ∆t can never be the square of an integer, so it will be
a square modulo about half of the primes `. The prime ` is an Elkies prime if
and only if there is another elliptic curve E ′, also defined over Fp, such that E
and E′ are isogenous via an isogeny of degree `. The kernel of this `-isogeny is a
subgroup C of order ` of E. Then the kernel polynomial hE′(x), which vanishes
exactly at the x-coordinates of points in C, and hence is of degree (`− 1)/2, can
be used in place of φ` above. The use of this polynomial, rather than the division
polynomial, leads to a factor of improvement in the overall running time of the
algorithm of as much as `2 = O(log2 p) [7, 1].

The primes ` for which ∆t modulo ` is not a square are referred to as Atkin
primes. If ` is an Atkin prime then t modulo ` cannot be determined as above,
but it can be restricted to lie in a proper subset of {0, 1, . . . , ` − 1}. We discuss
this case in Section 4.

Since t modulo ` is unknown at first, we cannot determine directly whether ∆t

is a square modulo `. Instead, we will try to find an `-isogenous curve E ′, if one
exists. The `-th classical modular polynomial Φ`(X, Y) is a symmetric bivariate
polynomial with integer coefficients, and of degree `+1 in each variable, with the
property that the `+1 curves `-isogenous to E have j-invariants which are roots
of Φ`(X, j) = 0. The sought after E ′ therefore exists if and only if Φ`(X, j) = 0
has a root j′ ∈ Fp. (see, e.g., [12, 7, 6]). Thus, a critical aspect of all known
effective point counting algorithms is the determination of modular polynomials
from which the j-invariant of an `-isogenous curve may be obtained, and thence
the kernel polynomial.

Classical modular polynomials are often computed over Z, stored, and then
reduced modulo desired primes p as needed. The computation, storage and ma-
nipulation of these polynomials is challenging due to the large number of coeffi-
cients and their sizes. For this reason, variants with fewer and smaller coefficients
have been proposed, which can still be used to obtain the information supplied
by the classical polynomials.

Note that for a given j, once j ′ is found by means of modular polynomials, it
is relatively simple to determine the polynomial hE′(x), which is what is needed
for the use of Elkies primes in the SEA algorithm. This involves taking various
partial derivatives of whichever modular polynomials are being used. The details,
which differ for the various modular polynomials, have been worked out in [12,
7, 10, 6] and will not be discussed here.

A unified framework for the computation of classical modular polynomials
and a class of variants is presented in Section 2, where the difficulties involved
and the techniques used are described, and the asymptotic complexity of the
computation is analyzed. Sections 3 and 4 discuss two specific variants, due to
Müller and Atkin, respectively. These sections attempt to unify the theoretical
basis for these variants, an aspect of the problem that has been difficult to obtain
from the literature. Finally, Section 5 contains a summary of the data collected on
the computation of the three types of modular polynomials, providing persuasive

4 Ian F. Blake et al.

evidence of the advantages of using the Atkin approach to modular polynomials
in the point-counting problem.

2 General approach to computing modular polynomials

Although our interest is in elliptic curves over finite fields, we will present the
theory over the field of complex numbers. The justification that everything works
the same way over finite fields is beyond the scope of this article and can be
found in [13, 7] and the references contained therein. Observe that the arithmetic
operations described in the algorithms of this paper can be carried out in any
field Fp as long as p > 2` + 2.

Recall that any elliptic curve E defined over the complex numbers can be
obtained as a quotient of C by a rank 2 lattice L. By scaling if necessary, we
may assume that L is spanned by 1 and some τ that is in the upper half plane.
Therefore, the j-invariant of E can be considered as a function of a variable τ in
the upper half plane. Letting SL2(Z) (the group of 2-by-2 matrices with integer
entries and determinant 1) act on the upper half plane via fractional linear

transformations (i.e.,
(

a
c

b
d

)

τ = (aτ + b)/(cτ + d)), we see that the quotients of

C by the lattices (1, τ) and (1, γτ) are isomorphic elliptic curves for any τ in the
upper half plane and any γ ∈ SL2(Z), and therefore j(τ) = j(γτ). In particular,

taking γ =
(

0
−1

1
0

)

∈ SL2(Z), we obtain the important fact that j(τ) = j(−1/τ).

Similarly, for γ =
(

1
0

1
1

)

, we obtain that j(τ) = j(τ + 1), so j has a Fourier
expansion in q = exp(2πiτ) as follows

j(q) =
1

q
+ 744 +

∞
∑

n=1

cnqn, cn ∈ Z.

Many of the functions used in the development will be power series in q, while the
`-isogenous j-invariants are more conveniently described in terms of functions of
the τ related to the given curve. Because of this it will often be convenient to use
q and τ interchangeably as arguments of functions, e.g., the j-invariant function
might be referred to as either j(q) or j(τ). It can be shown the j-invariants of
the ` + 1 curves `-isogenous to the given curve are precisely

j(`τ), j(
τ + k

`
), for k = 0, 1, . . . , ` − 1.

The `th classical modular polynomial Φ`(X, Y) may be defined as follows.
Consider first the univariate polynomial

Φ`(X, j(τ))) = (X − j(`τ))
`−1
∏

k=0

(X − j(
τ + k

`
)). (2)

For a given curve with j-invariant j(τ), Φ`(X, j(τ)) is the polynomial whose
roots comprise the j-invariants of all the curves `-isogenous to the given curve.

Computation of Modular Polynomials 5

Considering now j as a formal q-series rather than a specific value, it can be
shown that Φ` is irreducible over C[j(q)] and has coefficients in Z[j(q)] (see also
Section 4). Hence, we can write

Φ`(X, j(q)) =
∑

a,b

fabX
aj(q)

b
, or Φ`(X, Y) =

∑

a,b

fabX
aY b, fab ∈ Z. (3)

These polynomials can be subsumed under the following general formulation
that includes the approaches of Müller and Atkin considered in the following
sections. Let f1(q) and f2(q) be q-expansions such that there is a polynomial
G(X, Y) ∈ Z[X, Y] such that

G(X, j(q)) = (X − f1(τ))
`−1
∏

k=0

(

X − f2(
τ + k

`
)

)

=
∑

a,b

gabX
aj(q)b. (4)

Our goal then is to determine G given sufficiently many terms from the q-
expansions of f1 and f2. Let −vi denote the smallest exponent of q that occurs in
the q-expansion of fi. In each variant, v1 and v2 will be O(`). For simplicity, we
assume v2 is positive, which happens to be true in each of our cases of interest.

This setup reduces to the calculation of the classical polynomial Φ` upon
setting f1(q) = j(q`) and f2(q) = j(q). Then we have v1 = ` and v2 = 1.

Our approach to determining the coefficients gab of G is to substitute the
q-expansions for f1 and f2 into (4). Then, since the coefficient of each power of
X in (4) is a polynomial in j, we can directly read off G using only coefficients
of non-positive powers of q.

Our calculation is most effectively carried out by rewriting expression (4) in
the form

G(X, j(q)) = (X − f1(q))X
` exp

(

−
`−1
∑

k=0

∞
∑

m=1

fm
2 (q1/` exp(2πik/`))

mXm

)

(5)

by expressing (1 − u) as exp(log(1 − u)) and expanding the logarithm function.
Before getting into the details of the calculation, we note that although com-

plex analysis is used to derive some of the relations involved, the actual compu-
tations only involve power series with integer coefficients. In the two situations
of interest to us, it will make sense to actually carry out these computations
modulo suitable prime numbers. If we want to calculate the number of points
of elliptic curves over a fixed finite field, then it suffices to know the reduction
of our modular polynomials to the same field. If, however, we wish to compute
the polynomials over Z to store and use later for elliptic curves over varying
finite fields, then for each of our variants the numbers involved (for example,
the coefficients of G) grow at least exponentially in ` as ` increases. It is com-
putationally more efficient, therefore, to calculate them modulo various primes
and finally use the CRT to reconstruct them over Z. Therefore, in the sequel,
we assume that the computations are carried out over the field Fr, where r is a
prime larger than ` + 1 (since inverses of integers up to ` + 1 are required). We
will discuss later the problem of reconstructing G over Z.

6 Ian F. Blake et al.

Step 1. From the q-expansion of f2 we can compute fm
2 (q) =

∑∞
i=−mv2

α(i, m)qi,
and therefore

sm =

`−1
∑

k=0

fm
2 (q1/` exp(2πik/`)) = `

∞
∑

n=−bmv2/`c

α(`n, m)qn. (6)

Now we can rewrite (5) as

G(X, j(q)) = (X − f1(q))X
` exp



−`

∞
∑

m=1

∞
∑

n=−bmv2/`c

α(`n, m)qn

mXm



 . (7)

Notice that since we know that G(X, j(q)) only contains non-negative powers of
X , it suffices for us to only consider m ≤ `+1 in the summation above. Similarly,
since we only need non-positive powers of q to determine the coefficients of G,
using the restriction already obtained on m we may restrict to n ≤ v1 + (` +
1)v2/` = O(`).

To obtain each of the required coefficients α(i, m), we need to calculate each
of the fm

2 (where m = 2, . . . , ` + 1), to `(v1 + 2v2) + 2(v2 + 1) = O(`2) terms.
Using a fast (FFT-based) method to carry out polynomial multiplications, we
need O(`3 log `) field operations over Fr to carry out Step 1.

Step 2. To evaluate the exponential in (7), we used an algorithm due to
Brent and Kung [3] for the computation of the exponentiation of the univariate
power series. This was also adapted for bivariate power series.

Let B(m) = {−bmv2/`c,−bmv2/`c+1, . . . , v1+(`+1)v2/`} the set over which
n needs to be summed in (7). Splitting B(m) into the negative, zero and positive

subsets B
(m)
− , B

(m)
0 , B

(m)
+ , and using the notation An,m = −`α(`n, m)/m, we can

rewrite the exponential term in (7) as

exp







`+1
∑

m=1

∑

n∈B
(m)
−

An,mqn

Xm






exp

(

`+1
∑

m=1

A0,m

Xm

)

exp







`+1
∑

m=1

∑

n∈B
(m)
+

An,mqn

Xm






. (8)

Each exponential only needs to be evaluated to the X−`−1 term, and the first and
third can also be truncated after O(`) powers of q. Therefore, our exponentiation
algorithm can provide the answers in O(`2 log `) operations. Since the answers
can be multiplied out using FFT in no more than that many operations, we
conclude that Step 2 requires O(`2 log `) field operations in Fr.

Step 3. To actually read off the coefficients of G from (4) multiplied out
with the expansions of f1 and f2 already substituted, we need to invert a square
matrix of size v2 +max(0, v1) = O(`) (the coefficients of these matrix come from
coefficients of non-positive powers of q in j(q), j(q)2, etc., arising from (4)). Then
we need to multiply this inverse with O(`) different column vectors. Both steps
take O(`3) arithmetic operations over Fr (or faster, but with methods that are
seldom used in practice for the sizes of interest), and hence this is the overall
complexity of Step 3.

Computation of Modular Polynomials 7

We have now seen that we can calculate the coefficients of G modulo r in
O(`3+ε) field operations in Fr. Since each field operation takes O(log r log log r)
(binary) operations, when using fast methods for multiplication, the overall com-
plexity of obtaining G modulo r works out to O(`3+ε log r log log r).

The computation of G(X, Y) can also be approached by using Newton’s

identities to determine the coefficients of
∏`−1

k=0(X − f2(
τ+k

`)) from the power
sums sm of (6). This approach yields a slightly higher asymptotic complexity,
but in practice we found running times similar for both approaches.

To obtain the modular polynomials over Z, we compute their reductions
modulo sufficiently many primes r, and then reconstruct the integer coefficients
using an efficient implementation of the CRT (Garner’s algorithm [4]). If we
take r to be of fixed size (for example, one machine word, to exploit fast machine
arithmetic), then, as we will see in (9), the number of primes needed is O(` log `),
which brings the total cost of the computation to O(`4+ε). If, on the other hand,
we use “large” primes r, i.e., log r ≈ `, then the number of primes is O(log `), but
the operations in Fr cost O(` log `) bit operations, which, again, brings the total
cost to O(`4+ε). Recall that when the modular polynomials are computed directly
over the (fixed) field of definition Fp of the elliptic curve, we have ` = O(log p).

In the classical case, f2(q) = j(q) does not depend on `. If we wish to compute
modular polynomials for all primes ` ≤ L, we can compute fm

2 (q), 2 ≤ m ≤ L+1
and use the results for all `. Thus, the computational cost of Step 1 is amortized,
and it reduces, for each modular polynomial, to O(`2) field operations over Fr.
The overall computation is still dominated by the matrix multiplication in Step
3, which cannot be amortized.

The `th classical modular polynomial has (`2+3`+4)/2 coefficients (counting
fab = fba only once). By [5], the largest coefficient over Z has magnitude

exp (6`(log ` + O(1))) . (9)

For example, for ` = 197, the number of coefficients is 19702, the largest co-
efficient has 3724 decimal digits, and the total number of decimal digits in all
coefficients exceeds 53 million. These magnitudes make classical modular poly-
nomials difficult to compute, store, and manipulate, and have led researchers
to look for more manageable variants. These variants will be obtained by using
different q-series f1 and f2, which produce polynomials that provide similar in-
formation but are easier to compute and of smaller size. Two of these variants
are discussed in the next section.

3 Variants

Let Γ0(`) be the set of those matrices in SL2(Z) whose lower left entry is divisible
by `, and let g be a holomorphic function on the upper half plane that is invariant
under the transformations in Γ0(`). We also require that g be meromorphic at
the cusps and that its q-expansion around i∞ have only integer coefficients. By

8 Ian F. Blake et al.

[11, V, Thm. 1],

Gg(X) = (X − g(τ))

`−1
∏

k=0

(X − g(−1/(τ + k))

is a polynomial over Z[j(τ)]. (The various expressions plugged into g here are just
a complete set of coset representatives for Γ0(`) in SL2(Z) acting on τ .) Observe
that if the elliptic curve E is isogenous to an elliptic curve E ′ via an `-isogeny,
and the j-invariant of E is equal to j(τ), then the j-invariant of E ′ is going to
be equal to j(`τ ′), where τ ′ is one of {τ,−1/τ,−1/(τ + 1), . . . ,−1/(τ + `− 1)}.
(To verify this claim, refer to (2) and recall that j(τ) = j(−1/τ) for any τ in
the upper half plane.)

Therefore, if we have an elliptic curve E with j-invariant j(E), we can set
j(τ) in the coefficients of Gg to equal j(E), to obtain a polynomial Gg in C[X].
For any root g(τ ′) of Gg we can then find j(`τ ′) by using special properties of
g. We shall now survey the various functions g that have been proposed.

The classical case. Take g(τ) = j(`τ). This function is invariant under the
action of Γ0(`) by [11, VI, Thm. 12] and [11, remark below (14’)]. In this case,
g(τ ′) equal to j(`τ ′), by definition of g. This modular polynomial is indeed the
classical one, since

Gg(X) = (X − j(`τ))

`−1
∏

k=0

(X − j(−`/(τ +k)) = (X − j(`τ))

`−1
∏

k=0

(X − j((τ +k)/`),

which matches the definition of Φ` given before. (We used j(τ) = j(−1/(`τ))
again.) The kernel polynomial can now be determined from j(τ) and j(`τ) by
following the procedure given in [13, §7].

A g given by a simple formula. In [10, Section 5.1] Müller proposed
considering the Γ0(`)-invariant function g(τ) = `s(η(`τ)/η(τ))2s , where s is the
smallest positive integer such that v = s(` − 1)/12 is an integer and η(τ) is
the Dedekind η function, η(τ) = q1/24

∏∞
n=1(1 − qn). It is then also true that

g(−1/`τ) is equal to `s/g(τ). In this case,

Gg(X) = (X − g(τ))
`−1
∏

k=0

(X − g(−1/(τ + k)) = (X − g(τ))
`−1
∏

k=0

(X − f((τ + k)/`),

so we can see that the modular polynomial Gg can be calculated by the methods
of the previous section, by letting f1(q) = g(q) and f2(q) = f(q) (therefore
v1 = −v and v2 = v). The `th polynomial in this case has 2 + (` + 1)(v + 1)/2
coefficients. Notice that v can vary from (` − 1)/12 to (` − 1)/2, depending on
the residue class of ` modulo 12. This will also affect the size of the largest
coefficient, as can be seen on Figure 1 in Section 5.

Here g(τ ′) does not equal j(`τ ′), however the explicit formula for g allows us
to determine j(`τ ′) from g(τ ′). For the details of this calculation, as well as the
determination of the kernel polynomial from j(τ), j(`τ) and f(τ), refer to [10,
Section 6.3].

Computation of Modular Polynomials 9

A g invariant under τ 7→ −1/(`τ). If, in addition to all the conditions
above, our function g is also invariant under the Atkin-Lehner involution, τ 7→
−1/(`τ), then we can proceed as follows. We can determine the modular poly-
nomial by the previous methods, since

Gg(X) = (X − g(τ))

`−1
∏

k=0

(X − g(−1/(τ + k)) = (X − g(τ))

`−1
∏

k=0

(X − g((τ + k)/`).

Therefore, to obtain Gg we use the method of Section 2 with the q-series f1 =
f2 = g.

Getting from g(τ ′) to j(`τ ′) is as follows. The polynomial Gg(G, J) is sat-
isfied by the pair (j(τ ′), g(τ ′)). Using the Atkin-Lehner involution, we see that
Gg(G, J) is also satisfied by the pair (j(`τ ′), g(τ ′)). Hence, for each value of
g(τ ′), just find the roots of Gg(X, g(τ ′)) to obtain all possible values of j(`τ ′).
We might obtain some extraneous pairs (j(τ), j(`τ)) that do not correspond to
isogenies, but those will be eliminated when we try to calculate the corresponding
kernel polynomial, since the extra polynomials obtained will easily be confirmed
as invalid. The calculation of the kernel polynomial form the data given here is
explained in [9], [6], [10, Section 6.4].

The description of how one would obtain such a g is beyond the scope of
this article, but is described in [10, Section 5.3] and [7, 9, 6]. It is clear from
Section 2 that we want a g with a pole of low order v at i∞, since in this case
v1 = v2 = v. Müller finds very good functions using the action of the Hecke
operators on the weight 1 modular form η(τ)η(`τ). Atkin (conjecturally) finds
the best possible ones by lifting functions from the special fiber of the moduli
scheme X+

0 (`)/Z`. This guarantees that v < (` + 31)/24. The `th polynomial in
this case has (3v + 1)(` + 1)/2+ 2 coefficients. Hence, the number of coefficients
is no more than `2/16 + 5`/2 + 71/16.

4 Atkin primes

When calculating with the classical modular polynomial, we can glean some
information about t modulo ` even if ` is not an Elkies prime. In that case
Φ`(X, j) will split into factors of degree s and we can restrict t modulo ` to lie in
one of no more than 2φ(s) residue classes, namely t2 ≡ p(ζ + ζ−1 +2) (mod `),
for some primitive sth root of unity ζ in F`. For a proof, see [13, Prop. 6.2]
and [1].

It turns out that the splitting type of our variant modular polynomials is the
same as that of Ψ`, so they can be used just as well for Atkin primes. The proof
of this fact is based on the following theorem:

Theorem 1. Let p be an odd prime, and let R = Z[j] (where j is a transcen-
dental quantity over Z). Let Q be the field of fractions of R. Fix a reduction
homomorphism R → F, where F is a finite field of characteristic p. Let F be
a polynomial over R such that neither F nor its reduction to F have multiple

10 Ian F. Blake et al.

roots. Let G be a polynomial over R with no multiple roots. If F and G generate
the same splitting field, then the reductions of F and G over F have the same
splitting type.

For a proof, consult [10, Section 4.7] or [2].
Here F is going to be the classical modular polynomial, and G will be any of

our variant modular polynomials. The conditions are verified as follows. By [10,
Lemma 4.28], j(`τ) has invariance group Γ0(`). By [10, bottom of p. 59], for
any of our variants, g has invariance group Γ0(`) (since g and f have the same
invariance group). Therefore, by [10, Satz 4.32], the splitting field for both F
and G is the one corresponding to the same group Γ ∗(`) (which is also defined
in [10]). Finally, by [11, VI, Theorems 5 and 1], the roots of F and G are distinct,
since both polynomials are irreducible over a field of characteristic zero).

5 Experimental results

Section 3 presented variants of the classical modular polynomials, due to Müller
and Atkin. Although the various complexity measures of interest for these vari-
ants (computation time, coefficient size, number of coefficients) are asymptoti-
cally similar to the classical case, the smaller value of v = max{|v1|, v2} for the
variants leads to complexities that are significantly lower in practice. Table 1
shows various parameters for the example of ` = 197 mentioned at the end of
Section 2. Figure 1, on the other hand, plots the number of decimal digits of
the largest coefficient of the `th modular polynomial as a function of ` for the
classical case, the first Müller variant [10, Section 5.1], and the Atkin variant.
A similar plot for Atkin polynomials up to ` = 757 also showed “logarithmic”
growth, but the length of the largest coefficient for ` = 757 is only 509 digits.
Table 1 and Figure 1 clearly show the advantages of the Atkin approach. As for
practical running times, in our experiments, obtaining an Atkin polynomial for
` around 200 took a few minutes, while obtaining a classical polynomial of the
same order took several hours, both on similar computation platforms.

In fact, a recent implementation based on Atkin’s approach [6] incorporates
the computation of the modular polynomial “on the fly” as part of the point-
counting procedure, allowing for efficient generation of cryptographically strong
elliptic curves on limited-memory devices. This “on the fly” computation would
be very difficult for classical modular polynomials, where the computation of Φ`

would overwhelmingly dominate the point-counting procedure.

References

1. I.F. Blake, G. Seroussi and N.P. Smart. Elliptic Curves in Cryptography. Cam-

bridge University Press, July, 1999.

2. I.F. Blake, J.A. Csirik, M. Rubinstein and G. Seroussi. On the computation of

modular polynomials for elliptic curves, HP Laboratories Technical Report, to

appear.

Computation of Modular Polynomials 11

Table 1. Modular polynomial parameters for ` = 197.

Number of Digits in Total

v coefficients largest coeff. digits

Classical 197 19 702 3 724 53 431 792

Müller1 47 4 754 516 1 560 448

Atkin 6 1 883 119 148 733

Fig. 1. Size of largest coefficient as a function of `.

3. R.P. Brent and H.T. Kung. Fast algorithms for manipulating formal power series.

Jour. Assoc. Comp. Mach., 25, 581–595, 1978.

4. H. Cohen. A Course In Computational Algebraic Number Theory. Springer-Verlag,

GTM 138, 1993.

5. P. Cohen. On the coefficients of the transformation polynomials for the elliptic

modular function. Math. Proc. Camb. Phil. Soc., 95, 389–402, 1984.

6. J.A. Csirik. Counting the points on an elliptic curve on a low memory device.

Preprint, October, 1998.

7. N.D. Elkies. Elliptic and modular curves over finite fields and related computa-

tional issues. In D.A. Buell and J.T. Teitelbaum, editors. Computational Perspec-

tives on Number Theory: Proceedings of a Conference in Honor of A.O.L. Atkin,

American Mathematical Society International Press, 7, 1998 21–76..

8. F. Lehmann, M. Maurer, V. Müller and V. Shoup. Counting the number of points

on elliptic curves over finite fields of characteristic greater than three. In ANTS I,

LNCS 877, 60–70, 1991.

9. F. Morain. Calcul du nombre de points sur une courbe elliptique dans un corps fini:

aspects algorithmiques. J. Théorie des Nombres de Bordeaux, 7, 255–282, 1995.

10. V. Müller. Ein Algorithmus zur Bestimmung der Punktzahl elliptischer Kurven

über endlichen Körpern der Charakteristik grösser drei. Ph.D. Thesis, Universität

des Saarlandes, 1995.

11. B. Schoenberg. Elliptic Modular Functions: An Introduction. Springer-Verlag,

1974.

12 Ian F. Blake et al.

12. R. Schoof. Elliptic curves over finite fields and the computation of square roots

mod p. Math. Comp., 44, 483–494, 1985.

13. R. Schoof. Counting points on elliptic curves over finite fields. J. Théorie des

Nombres de Bordeaux, 7, 219–254, 1995

14. J.H. Silverman. Advanced Topics in the Arithmetic of Elliptic Curves. Springer-

Verlag, GTM 151, 1994.

